If you downloaded MatrixNav from this page before 4/29/2009, you should be aware that there is a newer version of the firmware, MatrixNavRv2, that reduces the GPS latency, and will perform much better than the first version.
I have been working with Paul Bizard on something we call the "Premerlani-Bizard robust direction cosine matrix estimator". It is based on the
work of Mahony et al. The idea is to continuously update the 3X3 matrix that defines the relative orientation of the plane and ground reference frames, using GPS and 3 gyros and accelerometers. The basic idea is to use gyro information as the primary link between the two reference frames, and to use GPS and accelerometer information to compensate for gyro drift. We are working on the theory together. Paul is performing simulations. I am testing ideas in my
UAV DevBoard. We have made a great deal of progress. There are demos available, and control and navigation firmware is available. The steps of the algorithm are:
1. Use the gyro information to integrate the nonlinear differential equations for the time rate of change of the direction cosines.
2. Renormalize the matrix to guarantee the orthogonality conditions for a direction cosine matrix.
3. Use speed and gyro information to adjust accelerometer information for centrifugal effects.
4. Use accelerometer information to cancel roll-pitch drift.
5. Use GPS information to cancel yaw drift.
By the way, the algorithm should work in any GPS, gyro, accelerometer nav system on a plane. Without magnetometer information, it will not work on a helicopter.
This discussion will provide progress reports from time to time. At this point we have completed all steps. Firmware and documentation for various demos and flight firmware are available on the
UAV DevBoard main page.
Firmware and documentation of a roll-pitch-yaw demo program are available. There is also a
first draft of an explanation of the algorithm.
If you have a UAV DevBoard, I highly recommend that you try the demo program, it is very easy to use, and runs without a GPS. During its development, I found that the gyro drift was much less than I thought it would be. After I added the drift compensation, the resulting roll-pitch peformance is nothing less than astounding.
Flight testing of "MatrixNav" is also complete. Firmware and documentation are available on the UAV DevBoard main page for stabilization and return-to-launch functions for inherently stable aircraft that are controlled by elevator and rudder. MatrixNav is implemented with a direction cosine matrix, and supercedes GentleNav. Anyone who has GentleNav should replace it with MatrixNav. Pitch stabilization is excellent under all conditions. Return to launch performance is excellent under calm conditions, and good under windy conditions. If you have the UAV DevBoard and an inherently stable plane, you will definitely want to try out MatrixNav.
Finally, AileronAssist, for the stabilization and RTL aircraft that have ailerons, is available.
What Paul and I are going to tackle next is altitude control.
Bill Premerlani