From Hackaday:

An Inertial Measurement Unit is most often found in self-balancing robots and quadcopters, providing enough high-speed sensor data to keep up with the effects of gravity.  He previously used some all-in-one IMU devices in school which did most of the work for him. But he wanted to grind down and look at what each sensor spits out and how those measurements are used. The first installment deals with the accelerometer, using its data to calculate pitch and roll. For these demonstrations [Anilm3] is using this ADXL345 sensor board, an Arduino, and some processing sketches for testing.

Whenever working with sensors you need to take noise into consideration. The post shows how to implement a low-pass filter in the code which will help smooth out the readings. The filtered data is then fed to a couple of mostly-painless formulas which calculate the movement of the accelerometer in degrees. The demonstration sketch is mapped to a 3D cube to give you an idea of how accurate the accelerometer is. There’s a little bit of lag which would let a self-balancing robot have a nasty fall. The solution to this issue will be discussed in upcoming parts of the series. The next installment tackles the gyroscope sensor.

Views: 2371

Comment by Martin Szymanski on September 25, 2012 at 10:24pm

A accelerometer also works well to coordinate (home) to a Gyro when a gravity exists.

http://www.dimensionengineering.com/info/accelerometers

 

Comment

You need to be a member of DIY Drones to add comments!

Join DIY Drones

© 2014   Created by Chris Anderson.

Badges  |  Report an Issue  |  Terms of Service