Hi to everyone at DIY Drones!

I don't know much about UAVs, my specialization is the design of laser products. I recently made a laser range finder by accident that might be useful in UAVs.

It started out as a project to design a new kind of chip that can measure events happening at the speed of light. Then, in order to prove that the chip worked properly, I had to make a test bed which turned into a laser range finder.

The chip has programmable performance settings so it can be used for either long range, high resolution or fast update rate measurements or some combination of these factors although not all at the same time. There is no minimum range, it works down to zero meters.

The best programmable settings give:

Best range >100m (to trees and grass)

Best resolution 1cm

Best update rate 100 readings per second 

You can see from the attachment that the range finder is quite small. The optics are made from acrylic so the whole thing is very light weight. It has an SPI connection to a host processor or it can have one already attached like in the picture. The laser is Class 1M. The optics are separate from the electronics so that they can be scanned with a servo or mounted on gimbals. It runs from 4.5V to 7.2V batteries and draws less than 200mA.

At the moment I'm looking to see if there is a market for something like this. I might consider producing small quantities for around $450. I'm not based in the USA so there are no export restrictions.

Views: 15601


Reply to This

Replies to This Discussion


Brilliant design. I've had a look at the 2 datasheets you recommended. They were incredibly helpful.

Excuse my ignorance (I'm new to this laser stuff).

I see that the DS00VQ100 chip never actually performs an A2D conversion, and rather just uses a counter to measure the time between the outgoing and incoming digitized pulses.

I am actually interested in analyzing the return signal to obtain some other data (using the return signal's shape and amplitude) and not only distance. So I'll need A2D conversions and thus I'll probably have to run a chip in the GHz range if I'm going to be getting samples out of such a short pulse (in the ns).

I'm keen to use a lot of your ideas, although I'd prefer to use a Microchip chip as I've had some experience with them.

Do you think all of this would be possible? Any ideas/advice would be greatly appreciated :)

Trust me, there is definitely interest in the UAV user community for cm accuracy at 50 meters.  The initial price might have put off some developers, but the SF-02 kit could be a winner.  I use my hexacopter as a camera platform and I would love to be able to go into Altitude Hold without worrying about a gust of wind or propwash changing the barometric altitude by a few feet.

Thanks for the comments Stephen. I'll put the full details of the soon-to-be-released SF02 on this forum once I get the final parts. Perhaps the lower price and lighter weight will attract more people and it will become a commercially viable product.

Sounds like an interesting application DJ.

As you correctly point out the technology in the DS series chips is based on digital time-base expansion and they use digital versions of the signals that have passed through a high speed comparator before entering the timing circuitry.

We have other LRF controller/timing chips that work on a different principle. The SF series as used in the SF01 (available now) and the SF02 (coming soon) directly expand the time-base of the analog signal and then use a conventional A2D to store them in processor memory before analysis. Both the analog and digitally stored versions of the signal are accessible to an external processor.

The image below shows what these signals look like. The red line (positive going signal) is the outgoing laser pulse. The return signals are inverted with a baseline of 2.0V DC. The blue line is a saturated return signal from a reflective target and the green line is a weak signal from a dark target at the same distance.

The time-expanded scale of the image when viewed on an oscilloscope is 125ms which equates to a real-time of 250ns. The digitized version of the signal has an equivalent A2D sampling rate of about 8GHz with a voltage resolution of 12 bit.


That looks pretty cool :)

I can see it being useful for terrain avoidance and terrain tracking for UAV's.

Depending on the minimum range, it could be used for precision landing approaches too.

My UAV group spent some time looking at the laser range finders that are starting to appear on cars, but without success. We'd definitely be interested in incorporating one of these into our fixed-wing UAV's, possibly with some APM integration too.

RaptorUAS MD - we've taken the basic idea and converted it into a laser altimeter. You can find some chatter here:

SF02/F and the unit is for sale here: lightware along with some other cool laser products.

Hi, I live next to the sea and i was wondering how will it perform over sea / waves.

can you please send me a user manual if you have written one. and how can I buy one or a few ?

Great work

Best wishes

Hi Ali. We've done a lot more work since this post so please take a look to our website here: lightwave to find newer products and documentation. There's an online shop so you can order directly from there.

These lasers aren't specifically designed to operate over water but we've had reports from several customers that the higher powered models work fine, but that the shorter range units lose signal over water.

Feel free to drop an email to Tracy: info@lightware.co.za for any further technical information or help with buying.

Does it works when both the target and itself are moving? I mean it can detect the relative distance

Hi Amy, fortunately we're not operating at relativistic speeds, so the reading is not affected by the laser or the target moving. Take a look at our latest range of products here: SF10

Thanks for replying, that really helpful ^_^

well, as I'm not using ArdoPilot software, does it work on Arduino or any other micro-controller like Raspberry Pi?

Reply to Discussion


© 2020   Created by Chris Anderson.   Powered by

Badges  |  Report an Issue  |  Terms of Service