All Posts (14038)

Sort by

How to install langding Gear for RC Jet


Things get slightly more complex when we move on to an accurate scale model. World War II fighters are popular builds; most are tail-draggers, and many have the gear arranged so the struts rake forward relative to the wing chord line when extended, and rake aft from the span line when retracted (Figure 2). Add the dihedral angle seen in the front view and it becomes difficult to visualize just how to fit the retract mechanism in the wing.

Let’s plan the retract installation for a hypothetical model with the strut raked forward 10º in the side view, raked aft 20º in the plans view, and perpendicular to a flat center section of the wing.

With the power of the CAD program, you can see how the gear installation will look after making any changes. All drawings will be of the left wing.

It is clear that you will have to tilt and rotate something to get the strut where it belongs. What happens if you tilt the entire mechanism 10º forward (clockwise) in the side view and rotate it 20º backwards (clockwise) in the plans view? That will create 20º of toe-in on the extended wheel, but you can fix that by twisting the strut 20º counterclockwise in the trunion. That gives the result shown in Figure 3.

Figure 3.

 


This may actually be acceptable, depending on the size of the tire and the thickness of the wing. Looking at the strut in the front view, you can see that there might be circumstances where the wheel would not retract completely into the wing. In the side view, the wheel is at quite an angle compared to the lower surface of the wing.

Now think about adding a cover door to the strut. It ought to be roughly parallel to the tire, but with this setup it will either be way out of alignment with the lower wing skin in the retracted position or angled to the slipstream when the gear is extended.

The full-scale aircraft manufacturers made numbers like these work so shouldn’t you be able to mimic that? Yes you can, with the following three-step procedure.

First, add the rake forward angle (extended) to the rake aft angle (retracted) and divide by two. In our example, [(10º + 20º) ÷ 2 = 15º], the mechanism—actually the pivot pin is the key item here—will be mounted in the wing rotated 15º clockwise in both the side and plans views.

The second step is to rotate the strut relative to the pivot pin. Subtract the rake aft angle (retracted) from the rake forward angle (extended) and divide by two. In the example, it is (10º - 20º) ÷ 2 = -5º

Figure 4.

 


The negative sign means the strut is rotated 5º counterclockwise in the side view. In other words, you need to put a “kink” in the strut. This kink may be the hardest part of the installation to implement and I’ll give some ideas on how to do it. Figure 4 is an exploded view that shows two ways of making the kink.

The third step of the procedure will be to calculate the required retraction angle. In the example, you can see it should be greater than 90º. Or the opposite can happen. When I built my Ki-61 Tony, the retraction angle needed to be less than the 90º built into the mechanism. I was unable to fudge it and got downgraded at every meet I entered because the strut was not at the proper angle with respect to the lower surface of the wing.

I had to splay the strut outward, otherwise the retracted wheel would have popped through the upper wing skin!

You can find the required retraction angle using solid geometry, trigonometry, and an $11 scientific calculator. First, calculate the distance between the lower end of the strut in the extended and retracted positions. Then plug this number into the Law of Cosines to calculate the retraction angle.

This is only a “first approximation,” because it does not consider the kink angle. In the example, the correct angle is approximately half a degree larger. This is insignificant given the tolerances in the building and the manufacture of the gear mechanism. See the sidebar for these calculations.

Commercial retracts are available with retraction angles varying in 5º increments. The sidebar calculation determined that about 94º of retraction angle was needed, so let’s install a 95º unit.

In the previous example it was necessary to rotate the strut in the socket of the trunion to avoid a huge amount of toe-in on the wheel. That must be done again, but you have two ways to do this. You can either rotate the strut on the kink, or rotate the kink in the trunion.

The better way is to fix the strut to the kink and rotate this assembly in the trunion. This will keep the strut vertical in the front view.

Figure 5.

 


Figure 5 shows the installation if you use a 5º kink and rotate the mechanism 15º clockwise in both the side and plans views. This is essentially what you set out to achieve. The only deviation is that the strut is raked a bit too far in the plans view. I’m reasonably sure this is because of the 95º retraction angle where the method’s geometry is based on a 90º angle.

The installation may still not be exactly as the full-scale gear. To match the full-scale geometry you would have to have the point where the strut intersects the pivot pin at the same relative location in the wing as on the full-scale. This may not be possible given the relationship of the strut socket, pivot pin, and height of the model’s retract mechanism.

This could also make the gear door geometry even more challenging. I can only suggest some finessing and finagling to fine-tune the installation to meet your standards.

As mentioned, making the kink in the strut may be the biggest challenge in this project. On a small model with 5/32- or 3/16-inch wire gear, it is only necessary to bend the wire that inserts into the trunion.

I did this on a Hurricane, but unfortunately, the wire would bend on rough landings and I would have to remove it and adjust the bend angle. I suspect the wire lost its temper when I soldered washers on the kink to set the length of insertion into the trunion and strut.

The retract mechanism in my 86-inch span Ki-61 was set up for a 1/2-inch diameter strut. The strut itself was hollow tubing. I used some 1/2-inch aluminum bar stock to make a fitting such as the one shown in Figure 4. First, I made a fixture (see Figure 6) from a piece of 1-inch hex stock.

Figure 6.

 


I drilled a 1/2-inch hole in the face of a short length of stock, but at a 5º angle. (The kink for the Tony’s gear also worked out to be 5º, but 5º forward.) A piece of the aluminum bar stock roughly 1-inch long was inserted to half its length in the fixture and held with a set screw.

The fixture was mounted in the three-jaw chuck of my mini-lathe and the exposed portion of the aluminum turned down until it would just fit inside the strut. The axis of this necked-down portion is rotated 5º from the axis of the 1/2-inch diameter section. When the parts were as well aligned as I could get them, I drilled the strut, kink, and trunion for bolts to hold them together.

I hope this technique will save you some frustration and yield a more accurate model on your next scale build.

 

Read more about main landing gear strut rake angles and how to calculate retraction angles on page 37 in the August issue of Model Aviation and in the tablet app.

Share your tips or experiences installing retractable landing gear.

Read more…

In the rapidly advancing field of autonomous drone technology, the significance of mission planning and scheduling cannot be overstated. These elements are integral to the effective deployment and operation of drones across various sectors, including agriculture, emergency response, and asset management. Efficient mission planning and scheduling are essential for optimizing the capabilities of drones, thereby maximizing return on investment for enterprises.

FlytBase is a leading company in this sector, committed to addressing the unique challenges faced by enterprises in mission planning and scheduling. With its latest updates—Dynamic Mission Scheduling and Improved Mission Planning—FlytBase aims to offer unparalleled control, flexibility, and efficiency in drone operations. These innovations are designed to transform how enterprises plan and execute drone missions, whether for security surveillance, asset inspection, or other specialized applications.

Dynamic Mission Scheduling: A Game-Changer

The Old vs. The New

Previously, mission scheduling for autonomous drones operated on 15-minute intervals. This limitation often resulted in inefficiencies, such as increased idle time for drones and delayed responsiveness to dynamic situations.

With the latest update from FlytBase, this has been refined to flexible 5-minute scheduling slots. This significant reduction in time intervals allows for more agile mission planning, enabling drones to adapt swiftly to changing conditions or new tasks. The transition from 15-minute to 5-minute intervals represents a substantial advancement, enhancing the ability to conduct timely and consistent surveillance or asset inspections.

Benefits for Enterprises

The introduction of flexible 5-minute scheduling slots brings forth several advantages that are crucial for optimizing drone operations.

  1.  Faster Responsiveness to Dynamic Situation: One of the most significant benefits is the ability for quicker adaptation to changing conditions. Whether it's an unexpected security breach or a sudden need for asset inspection, the reduced time intervals allow for immediate action, minimizing delays and enhancing operational effectiveness.

  2. Enhanced Efficiency and Reduced Idle Time for Drones: Another advantage is the drastic reduction in drone idle time. By allowing for scheduling at 5-minute intervals, drones can be deployed more frequently, thereby maximizing their utility. This leads to improved overall mission efficiency and quicker task completion, which is vital for any operation requiring precision and timeliness.

Real-world Applications

The advancements in Dynamic Mission Scheduling are not just theoretical improvements; they have practical implications that can be readily observed in various operational contexts.

Security Patrols

The flexible 5-minute scheduling slots are particularly beneficial for security patrols. In environments where security is a constant concern, the ability to deploy drones at shorter intervals ensures more frequent surveillance. This leads to a more robust security posture, as drones can be quickly dispatched to investigate any unusual activity, thereby enhancing situational awareness and response times.

Regular Asset Inspections

For industries that require regular inspections of assets—be it infrastructure, machinery, or natural resources—the new scheduling flexibility is invaluable. The reduced time intervals allow for more thorough and regular inspections, ensuring that any changes or anomalies are detected promptly. This is crucial for preventive maintenance and timely interventions, which can mitigate risks and prevent costly downtimes.

Improved Mission Planning: Customization at its Best

FlytBase's latest updates go beyond scheduling; they extend into the realm of mission planning, offering a range of features designed to provide maximum customization and control.

User-Friendly Interface

The first thing users will notice is the revamped User Interface (UI). This transformation not only modernizes the look but also incorporates intuitive design elements, making navigation and interaction smoother than ever before.

Custom WPML Flow

For those who require mission adjustments, the new WPML flow allows for easy import and modification of WPML files. This feature provides an added layer of flexibility for mission customization.

Altitude Precision

When it comes to altitude settings, users now have the option to choose between "Above Sea Level (ASL)" and "Above Ground Level (AGL)" modes. This ensures greater accuracy and precision in mission planning.

Takeoff Altitudes

The update also offers flexibility in takeoff strategies. Users can choose between "Launch" or "Safe Take-off" modes, allowing for a more tailored start to each mission.

Advanced Waypoint Types

The new features include advanced waypoint types, enabling users to define drone navigation through modes like linear paths, transit before waypoints, curved paths, or controlled radii.

Yaw Control

For enhanced control over drone heading, options such as "Along Route," "Lock Yaw Axis," or "Manual" modes are now available.

Payload Configuration

The update allows for seamless payload configuration, offering options like Zoom, Wide, or IR mode, either at the route level or specific waypoint level.

New Mission Finish Actions

Previously limited to "Return to docking station," users can now choose from "Exit mission and hover" and "Go to the first waypoint and hover," providing added flexibility in concluding missions.

Grid Mission Optimization

For grid missions, the update allows for image capture intervals as brief as 1 second, effectively doubling efficiency compared to the previous 3-second minimum.

Excited and Want to Know More?

If the features and benefits of FlytBase's latest updates in Dynamic Mission Scheduling and Improved Mission Planning have piqued your interest, there are several ways to delve deeper into these advancements.

How to Access Comprehensive Guides and User Manuals

For those looking for a more in-depth understanding, comprehensive guides and user manuals are available. These resources provide detailed explanations, step-by-step instructions, and best practices to help you make the most out of these new features.

Information on Previous Updates and How to Stay Updated

If you're interested in the evolutionary journey of FlytBase's offerings, information on previous updates is readily accessible. To stay abreast of future updates and enhancements, consider subscribing to newsletters or following FlytBase on social media platforms.

Conclusion

FlytBase's latest updates in Dynamic Mission Scheduling and Improved Mission Planning are more than just incremental changes; they represent a transformative approach to how missions are planned and executed. With features designed for flexibility, efficiency, and customization, FlytBase is setting new standards in the field of autonomous drone operations. Whether it's adapting to dynamic situations, optimizing drone utility, or tailoring missions to specific needs, these updates are designed to empower users to achieve their operational objectives more effectively.

If you have any questions or require further clarification on any of these groundbreaking features, don't hesitate to reach out for support. Contact support@flytbase.com for all your queries, and take the first step towards optimizing your drone operations today.

Additional Resources

For those interested in diving deeper into the functionalities and features offered by FlytBase, the following resources are invaluable:

FlytBase User Manual

For a comprehensive understanding of all features, including the latest updates, refer to the FlytBase User Manual.

Read more…

The Growing Challenges in the Solar Industry

The solar industry is booming, with a 45% rise in global solar installations in 2022 alone. However, this rapid expansion brings its own set of challenges. Labor shortages, cost pressures, and the need for greater transparency are just a few of the hurdles that solar companies face today. Traditional methods of managing solar farms, such as manual inspections and data collection, are becoming increasingly inefficient and costly.

Consider the time and resources spent on manual inspections. A company like AfterFIT in Tokyo reduced their inspection time from 3 hours to under 10 minutes by using drones. The manual approach not only drains resources but also exposes workers to potential hazards. Moreover, human errors can lead to inaccurate data collection, which can have severe consequences, including reduced power generation and even safety hazards.

The Rise of Autonomous Drones and Data Analytics

The Role of Drones in Solar Industry

Drones are revolutionizing the solar industry by aiding in every stage of a solar plant's life cycle—from planning and construction to maintenance. They can perform tasks like topographic surveys, 3D mapping, and even thermal imaging to detect hotspots in solar panels. On average, drones have expedited data collection by 70% compared to manual methods, all while maintaining high accuracy.

Key Components and Benefits of Autonomous Drone Operations

Autonomous drones take this a step further by eliminating the need for human intervention in data collection. These drones are equipped with advanced software platforms like FlytBase, which ensures safe flight operations, data security, and regulatory compliance. Hardware components like the DJI Dock allow these drones to operate autonomously, following predefined routes and returning to the docking station without human intervention.

Key Benefits Include:

  • 24/7 Availability: Operates round the clock, ensuring continuous data collection.
  • Cost Savings: Reduces travel costs and optimizes resource utilization.
  • Reduced Human Risk: Minimizes risks associated with manual piloting.

Integrating Data Analytics for Comprehensive Insights

Data analytics platforms like Above’s SolarGain can be seamlessly integrated with autonomous drone technology. These platforms utilize machine learning to provide real-time situational awareness and detailed plant status reports. This digitalization offers a single source of truth for solar plant health, supports digitalized workflows, and enables a data-informed approach for better decision-making.

The Way Ahead

The most effective way to adopt this technology is through a phased approach. Start by deploying drones at one or a few sites to establish standard operating procedures and build a strong safety record. This sets the stage for a seamless transition to end-to-end automation and efficient solar energy management.

Conclusion

The future of the solar industry lies in automation and digitalization. Autonomous drones and data analytics platforms are not just a technological advancement; they are a necessity for solar companies aiming to stay competitive in this fast-growing market. By adopting these technologies, companies can significantly improve efficiency, reduce costs, and most importantly, contribute more effectively to the global shift towards cleaner energy.

Are you ready to take your solar operations to the next level? Don't miss out on the comprehensive guide that dives deep into the transformative power of autonomous drones and data analytics in the solar industry.

Download the Whitepaper: Navigating the Future of Solar with Autonomous Drones and Data Analytics

For more information, visit FlytBase and Above Surveying.

Read more…

Skydio exits consumer quad copters

https://www.theverge.com/2023/8/10/23827260/skydio-pivot-enterprise-x2

 

Another one bows to the Chinese juggernaut, so you can't blame open sourcing the autopilot this time. 

 

Reviewers found DJI's obstacle avoidance to be inferior but cheaper.  The big features in the last 10 years were tracking & obstacle avoidance, yet to this day no-one outside China really knows how machine vision trackers differentiate a person in a crowd.  There's some evidence they might use chroma keying on top of a simple person detector.  Person detectors are pretty germane nowadays.  You can train efficientdet to detect just humans.  Chroma keying is still subject to the vagaries of white balance & lighting.  A head recognizer would be a game changer.  There's no known head tracker which can recognize a head from all angles.  There are only face trackers which only work from in front. 

 

Had decent results with a semi autonomous person detector on a jetson nano but no chroma keying & no obstacle avoidance.  For closeup shots in crowd, semi autonomous driving might be here for a long time.

12239179896?profile=RESIZE_710x

 

 

 

 

 

Read more…

Request for Input: AUV End-Users

I am a new member to this community, thank you for having me!

--

I need your help. Help from people that work closely with Autonomous Underwater Vehicles (AUV) - operators, mission designers, maintenance etc. 

Your input will be the backbone of my research. I am a grad student pursuing an MBA. My research is intended to discover what AUV end-users most value in their AUV capability set. We'll call these "value drivers".

I've classified these "value drivers" as:
- Battery Endurance
- Optimal AUV Speed
- AUV Price-tags
- Data Transfer Capabilities
- AUV Range
and some others. 

 

But first, I must find people that are involved with the technology and knowledgeable on the industry. If this is you, please consider responding to this post! 

If you will have a conversation with me, via email, phone or video-call, please say so on this post, message me privately with contact info (or we can do it through PMs) or email me at "U1444149@umail.utah.edu"

Again, thank you so much! Thanks in advance everyone. It can be difficult to source primary users in any research. You will be helping me out quite a bit. 
I'll be happy to share the fruits of this labor with everyone. 

- Scott  

Read more…

TFmini-i and TF02-i can be interfaced with PixHawk1 CAN port or any flight controller which has Ardupilot firmware flashed and having CAN interface. Support for CAN protocol has been added to Ardupilot firmwares, starting from Copter 4.2.0 for the purpose of obstacle avoidance and Altitude Hold.

1.  TFmini-iandTF02-i Settings:

It should be noted that TF02-i and TFmini-i have two different hardware versions for 485 and CAN. So when buying LiDAR, please pay attention to buy LiDAR with CAN interface. Multiple LiDARs can be interfaced to a single CAN bus. We need to assign different CAN IDs to each LiDAR just like we do for IIC communication. The baud-rate of each LiDAR needs to be set to the same value. On LiDAR side we have two types of CAN IDs:

    Send ID: it becomes Receive ID on CAN bus side (we need to set this ID to a new value ifwe

are connecting multiple LiDARs.)

    Receive ID: it becomes Send ID on CAN bus side

I will consider three LiDARs example but Ardupilot supports up to  10 sensors. The commands are mentioned in details in the manual of LiDAR but I will add them here for convenience. It is still advised to read the manual of LiDAR carefully there are important points.

5A 0E 51 00 08 03 00 00 00 04 00 00 00 C8 [CHANGE SEND ID TO 04]

5A 0E 51 00 08 03 00 00 00 05 00 00 00 C9 [CHANGE SEND ID TO 05]

5A 0E 51 00 08 03 00 00 00 06 00 00 00 CA [CHANGE SEND ID TO 06]

5A 04 11 6F [SAVE SETTINGS]

5A 05 60 01 C0 [Enable 120Ω Terminating Resistor]

5A 05 60 00 BF [Disable (Default) 120Ω Terminating Resistor]

5A 0E 51 00 08 03 00 00 00 03 00 00 00 C7 [CHANGE RECEIVING ID BACK TO 03]

Some  details  about terminating  resistor  on LiDAR: Although resistor  on LiDAR  is  disabled by default and LiDAR works without enabling resistor but adding resistor helps in reducing equivalent resistance of transmission wires, because adding more resistors in parallel will reduce the equivalent resistance. So in case you are experiencing any kind problem with data stability then you could enable resistors on LiDARs by sending command I added above. I have tested with total five LiDARs (two with resistors enabled and three without enabling resistors and I was able to get stable data).

For sending the above commands, you will either need CAN analyzer or TTL-USB board (because UART interface of TF02-i/TFmini-i can be used to configure its parameters).

Once you are done with above settings then it’s time to move to physical connection and Ardupilot firmware settings.

We take three TFmini-i or TF02-i CAN as an example in this passage and set the addresses to 0x03 and 0x04 and 0x05 separately. The default sending ID of LiDAR is 0x03 so leave it for one LiDAR and configure for other two LiDARs to 0x04 and 0x05.

2.   PixHawkConnection:

The following two diagrams show how to interface TFmini-i and TF02-i CAN with PixHawk flight controller. The wiring details of TFmini-i and TF02-i CAN is the same.

 12222374661?profile=RESIZE_710x

 

Figure 1: Schematic Diagram of Connecting TFmini-i CAN to CAN Interface ofPixHawk1

Note

     1.  Pleasepayattention to connect right wire to the right pin of flight controller. Look at the pinout of controller, pin configurations are starting from left to right:

12222374861?profile=RESIZE_400x

Figure 2: Pin details of CAN Interface ofPixHawk1

  1.  Relatedconnectorsneed to be purchased by user, LiDAR connector is 7-pin JST with25mm pitch.
  2.  IfLiDARfaces down, please take care the distance between lens and ground, it should be larger than LiDAR’s blind zone ( 10cm).
  3.  IfmoreLiDARs need to be connected ( 10 LiDARs can be connected), the method is same.
  4.  Powersourceshould meet the product manual current and voltage requirement: 7V to 30V, larger than 100mA*number of LiDAR. I used 12V supply.

 12222375096?profile=RESIZE_584x

 Figure 3: Schematic Diagram of Connecting TF02-i CAN to CAN Interface ofPixHawk1

 

3.  Parameterssettings:

Common settings for obstacle avoidance :

AVOID_ENABLE= 3 [if 3 = UseFence and UseProximitySensor doesn’t work in IIC then choose 2 = UseProximitySensor]

AVOID_MARGIN=4

 

PRX_TYPE=4

Settings for CAN-1 port:

CAN_P1_DRIVER = 1

CAN_D1_PROTOCOL = 11

CAN_P1_BITRATE =  [Baud-rate: For TFmini-i and TF02-i it is 250000, and for TF03 the default baud-rate needs to be set to 1000000.]

In case of pixhawk1 we only have one CAN interface but if there are more than one interfaces then configure the parameters for CAN-2 interface.

Settings for CAN-2 port:

CAN_P2_DRIVER = 1

CAN_D2_PROTOCOL = 11

CAN_P2_BITRATE =  [Baud-rate: For TFmini-i and TF02-i it is 250000, and for TF03 the default baud-rate needs to be set to 1000000.]

 

Settings for first TFmini-i or TF02-i:

RNGFND1_RECV_ID = 3 [CAN Transmit ID of #1 TFmini-i or TF02-i in decimal]

RNGFND1_GNDCLEAR=15 [Unit: cm, depending upon mounting height of the module and should be larger LiDAR than non-detection zone. This parameter is required to be configured for altitude hold, it is the installation height of LiDAR from ground.]

RNGFND1_MAX_CM = 400 [It could be changed according to real demands but should be smaller than effective measure range of LiDAR, unit is cm]

RNGFND1_MIN_CM=30 [It could be changed according to real demands and should be larger than LiDAR non-detection zone, unit is cm]

RNGFND1_ORIENT=0 [#1 TFmini-i real orientation]

RNGFND1_TYPE = 34 [TFmini-i CAN same as TF02-i and TF03-CAN]

 

Settings for second TFmini-i or TF02-i:

RNGFND2_RECV_ID = 4 [CAN Transmit ID of #2 TFmini-i or TF02-i in decimal]

RNGFND2_MAX_CM=400

RNGFND2_MIN_CM=30

RNGFND2_ORIENT = 6 [#2 TFmini-i real orientation]

RNGFND2_TYPE = 34 [TFmini-i CAN same as TF02-i and TF03-CAN]

 

Settings for third TFmini-i or TF02-i:

RNGFND3_RECV_ID = 5 [CAN Transmit ID of #3 TFmini-i or TF02-i in decimal]

RNGFND3_MAX_CM=400

 

RNGFND3_MIN_CM=30

RNGFND3_ORIENT = 4 [#3 TFmini-i real orientation]

RNGFND3_TYPE = 34 [TFmini-i CAN same as TF02-i and TF03-CAN]

 

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

If the error message “Bad LiDAR Health” appears, please check if the connection is correct and the power supply is normal. Please turn-off completely the flight controller after configuring the parameters, otherwise changes will not take place. If your battery is connected to your flight controller, please disconnect it as well. 

How to see the target distance from the LiDAR: press Ctrl+F button in keyboard, the following window will pop out:
12222375465?profile=RESIZE_710x

  

Click button Proximity, the following window will appear:
12222375870?profile=RESIZE_584x

The number in green color means the distance from LiDAR in obstacle avoidance mode the number refreshes when the distance changes or window opens, closes, zooms in or zooms out, and this distance will not be influenced in Mission Planner, the version used at the time writing this tutorial is v1.3.72.

Altitude Hold using CAN Interface:

Let say we use fourth LiDAR for the purpose of Altitude Hold. Connect the flight control board to mission planar, Select [Full Parameter List] in the left from the below bar-[CONFIG/TUNING]. Find and modify the following parameters:

PRX_TYPE = 0 [on equal to 4 also gives the value ifRNGFND4_ORIENT = 25]

RNGFND4_RECV_ID = 6 [CAN Transmit ID of #4 TFmini-i or TF02-i in decimal]                                 

RNGFND4_GNDCLEAR = 15 [Unit: cm, depending upon mounting height of the module and should be larger LiDAR than non-detection zone. This parameter is required for Altitude Hold.]

RNGFND4_MAX_CM = 400 [It could be changed according to real demands but should be smaller than effective measure range of LiDAR, unit is cm]

RNGFND4_MIN_CM = 30 [It could be changed according to real scenario and should be larger than LiDAR non-detection zone, unit is cm]

RNGFND4_ORIENT = 25 [#4 TFmini-i real orientation]

RNGFND4_TYPE = 34 [TFmini-i CAN same as TF02-i and TF03-CAN]

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

If the error message “Bad LiDAR Health” appears, please check if the connection is correct and the power supply is normal.

Select option sonarrange, see following picture:
12222376255?profile=RESIZE_710x

 

The altitude distance from the LiDAR will be displayed in Sonar Range (meters), see the following

picture:

12222376078?profile=RESIZE_180x180

Read more…

📚 Introducing "Hardware Billionaire: Chronicles of IDOLCAM Development" 🚀
Dive into the captivating journey of creating the groundbreaking IDOLCAM, a must-have hardware product creation guide for aspiring entrepreneurs, innovators and anyone wanting to make billions! 🌟
This book meticulously details the entire development process, offering invaluable insights, and lessons learned along the way. 💡
Discover how we achieved the extraordinary - creating a cutting-edge product efficiently and affordably. 💰💨
If you're passionate about bringing your ideas to life on a budget and timeline, this book is your ultimate roadmap! 🗺️
Get ready to unlock the secrets to innovation, efficiency, and success. Grab your copy of "Hardware Billionaires" today! 📘✨ #IDOLCAMChronicles #InnovationUnleashed #EntrepreneurshipMastery

https://www.idolcam.co/hardwarebillionaires12218678879?profile=RESIZE_710x

Read more…

I have observed many many times during conventional menthod of current calibration of the 3DR Power module using arming the copter and motors that the current displayed by the power anlyzer is not stable and fluctuating by 1-2Amps or even higher. And calibration done via this old conventional is not proper and current reported in mission planner while the copter is in air, is in error by 1-2amps and that makes lot of error.

Initially I thaught of using two 100Watt 1Ohm resistors in parallel and energizing them via 30Amp brushed motor ESC connected to the output of the 3DR Power module (power tapped from same points where 4 ESC's are soldered. To control the brushed 30Amp ESC, I used standalone cheap servo tester. I mounted the two 100W 1Ohm wirewound resistors which were already in aluminium heat sinkable cases, on an additional large aluminium heat sink with a fan. I set the servotester knob to display 10Amps of current in the Turnigy Power Analyzer, but very soon the current dropped around an ampere lower. I again adjusted for 10 Amps and same thing again observed. Reason for this was the ohmic value of the resistor depend on the temperature and on increasing temperature the net resistance was increasing and hence the current drawn was decreasing. I then rejected this method and thought something else.

I then thought of using car head light halogen 100W lamp in place of two wirewound resistors, this was rather simpler and required no heat sink and the current drawn value whatever I set to was almost very stable. Rest you can watch the video. 

https://www.youtube.com/watch?v=vWPxR1D9vOo

Read more…

Application of TF-Luna in Pixhawk

TF-Luna can directly be connected with the serial port of Pixhawk. TF-Luna can be used in flight device

for the purpose of altitude holding or obstacle avoidance. This document is suitable to Pixhawk adopts ArduCopter V4.0.0 or higher firmware.

Example for connecting Pixhawk:

 12214371691?profile=RESIZE_584x

Figure 1 Schematic Diagram of Connecting TF-Luna with TELEM 2 Interface (Serial Port 2) of Pixhawk

a)MissionPlanner configuration description of TF-Luna for the purpose of altitude hold

 

Connect the flight control board to MP.Attention:the installation height should be bigger than non-detection zone.Select [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

SERIAL2_PROTOCOL = 9    [Rangefinder option]

 

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

 

RNGFND_MIN_CM = 20    [It could be changed according to real demands and should be bigger LiDAR than non-detection zone,unit is cm]

RNGFND_MAX_CM = 200      [It could be changed according to real demands but should be smaller than

effective measure range of LiDAR,unit is cm]

 

RNGFND_GNDCLEAR = 15    [expressed in cm, depending upon mounting height of the module and

should be bigger LiDAR than non-detection zone]

 

RNGFND_ORIENT=25    [face down]

 

PRX_TYPE=0

 

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

 

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the altitude value from LiDAR sensor: double click the area of the Mission Planner, see the following picture:

12214373260?profile=RESIZE_400x

Select option sonarrange,see following picture:

 12214371897?profile=RESIZE_584x

 

The altitude distance from the LiDAR will be displayed in Sonar Range(meters),see the following picture:

b)  MissionPlannerconfiguration description of TF-Luna for the purpose of Obstacle Avoidance

12214373277?profile=RESIZE_400x

It’s only recommended to be used in Loiter mode, the detail setting is as followings:

 

Connect the flight control board to MP. Attention:distance between UAV margin and LiDAR should be bigger than LiDAR non-detection zone.  Select  [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

AVOID_MARGIN=3 [Unit: m, set obstacle avoidance distance as required]

SERIAL2_PROTOCOL = 9    [Rangefinder option]

 

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

 

RNGFND_MIN_CM = 20      [It could be changed according to real demands and should be bigger LiDAR

than non-detection zone,unit is cm]

 

RNGFND_MAX_CM = 200    [It could be changed according to real demands but should be smaller than effective measure range of LiDAR,unit is cm]

RNGFND_GNDCLEAR = 15    [Unit: cm, depending upon mounting height of the module and should be bigger LiDAR than non-detection zone]

RNGFND_ORIENT=0      [It depends on the LiDAR’s real installation direction,0~7 is supported up to

now,see detail in MP]

 

PRX_TYPE=4        [RangeFinder should be selected for proximity sensor in obstacle avoidance mode]

 

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

 

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the target distance from the LiDAR:(distance from LiDAR in obstacle avoidance can’t be displayed in sonarrange option )press Ctrl+F button in keyboard,the following window will pop out:

 12214372872?profile=RESIZE_710x

Click button Proximity,the following window will appear: 

 

The number in green color means the distance from LiDAR in obstcle avoidance mode  (the number only refresh when this window open,close,zoom in or zoom out,it doesn’t mean the real time distance from LiDAR and will not be influenced in Mission Planner version under v1.3.48,the problem could be solved by updating Mission Planner)

 

    Attach:If TELEM 2 port has been used ,SERIAL4/5 interface could be used,the other setting are same

 

Figure 2 Schematic Diagram of Connecting TF-Luna with SERIAL4/5 Interface (Serial Port 4/5) of Pixhawk

Configuration Descriptions of Mission Planner

 

Connect  flight  control  board  to  MP,  Select  [Full  Parameter  List]  in  the  left  from  the  below  bar [CONFIG/TUNING] . Find and modify following parameters:

SERIAL4_PROTOCOL = 9 (LiDAR)

SERIAL4_BAUD = 115

 

Upon setting of these parameters, the other parameters should be same as Mission Planner configuration description of TF-Luna for the purpose of Obstacle Avoidance or Altitude Holding,then click [Write Params] on the right of the software to finish.

Read more…

In the modern drone ecosystem, BVLOS (Beyond Visual Line of Sight) operations represent the next frontier of possibilities. These operations allow drones to travel distances beyond the operator's direct vision, unlocking potential in industries like agriculture, logistics, surveillance, and more. However, automating BVLOS operations requires not just advanced drones but also sophisticated management platforms. This is where FlytBase and DJI's FlightHub 2 come into play, especially with their compatibility with the DJI dock.

The DJI dock integration is a game-changer, enabling automated drone charging, data transfer, and mission planning. With both FlytBase and FlightHub 2 offering compatibility with this dock, enterprises are presented with a pivotal decision: Which platform will best optimize their BVLOS operations?

This article aims to demystify this choice. We'll delve deep into both platforms, comparing their features, and drawing insights from genuine user feedback, all with a focus on maximizing the benefits of DJI dock integration.

FlytBase: Product Overview

FlytBase emerged as a leading enterprise drone autonomy software, tailored to automate and optimize drone operations. Its compatibility with the DJI dock underscores its commitment to facilitating seamless BVLOS operations.

12213375280?profile=RESIZE_710x

FlytBase: Key Features

  1. BVLOS-Ready Operations: With regulatory approvals in its arsenal, FlytBase ensures enterprises can confidently undertake extended drone operations.
  2. Open Integration: A flexible platform, FlytBase supports robust API and third-party app integrations, catering to diverse enterprise needs.
  3. Data Security: GDPR compliance and ISO 27001 certification ensure that data integrity and security are paramount.
  4. Operational Excellence: From live HD/thermal feeds to ERP and VMS integrations, FlytBase offers a comprehensive suite for varied enterprise needs.
  5. DJI Dock Compatibility: Seamless integration with DJI dock facilitates automated charging, data transfer, and mission planning, enhancing operational efficiency.

12213376670?profile=RESIZE_710x

 

FlytBase: User Review

12213378091?profile=RESIZE_710x

FlytBase: Pricing Plans

For detailed pricing information reach out here: https://www.flytbase.com/contact

FlightHub 2: Product Overview

DJI's FlightHub 2 is not just another drone management solution. It's a comprehensive cloud-based platform designed to provide real-time insights for drone missions. Its compatibility with the DJI dock makes it a formidable choice for enterprises aiming for streamlined BVLOS operations.

12213375872?profile=RESIZE_710x

FlightHub 2: Key Features

  1. Real-time Situational Awareness: Features like 2.5D Base Map and One-Tap Panorama Sync ensure enterprises always have a bird's-eye view of their operations.
  2. Cloud Power: With Cloud Mapping and Unified Management, FlightHub 2 leverages the cloud's prowess for enhanced operational insights.
  3. Data Security: Hosted on AWS and compliant with ISO/IEC 27001, FlightHub 2 ensures data remains protected and secure.
  4. Operational Suite: From Mission Live Streaming to Ground-to-Cloud Synergy, FlightHub 2 offers a range of features to optimize drone operations.
  5. DJI Dock Integration: FlightHub 2's seamless integration with DJI dock ensures automated drone operations, from charging to mission execution, are a breeze.

12213377659?profile=RESIZE_710x

Flighthub 2: Pricing Plans

12213379088?profile=RESIZE_710x

FlytBase vs FlightHub 2: Key Differentiators

Let's delve into the primary areas where FlytBase and FlightHub 2 diverge.

  1. BVLOS Operations and Integration:

    • FlytBase: Puts a strong emphasis on its BVLOS-ready capabilities, highlighting its regulatory approvals. Its open platform approach with APIs and third-party app integration capabilities makes it stand out for enterprises looking for flexibility.
    • FlightHub 2: While it also supports BVLOS operations, its strength lies in providing comprehensive real-time situational awareness. The platform doesn't emphasize third-party integrations as much but offers a rich set of built-in features.
  2. User Experience and Interface:

    • FlytBase: Offers a streamlined interface tailored for ease of use, making it intuitive for users to navigate and manage drone operations.
    • FlightHub 2: Provides a more detailed dashboard, focusing on in-depth insights and comprehensive drone mission management. This might come across as more complex for some users, especially those new to drone operations.
  3. Data Security and Compliance:

    • FlytBase: Prioritizes data security with multiple layers of protection, including GDPR compliance and ISO 27001 certification, ensuring data integrity and security.
    • FlightHub 2: While it also emphasizes data security, its hosting on Amazon Web Services with ISO/IEC 27001 security certifications is its unique selling point.
  4. Operational Features and DJI Dock Compatibility:

    • FlytBase: Apart from its core features like live HD/thermal drone feeds, its compatibility with DJI dock ensures seamless integration for automated BVLOS operations.
    • FlightHub 2: While it also integrates seamlessly with DJI dock, it offers additional features like 2.5D Base Map and Cloud Mapping, enhancing the operational experience.

By understanding these key differentiators, enterprises can make an informed decision based on their specific needs and operational priorities.

Conclusion - FlytBase vs FlightHub 2

Every decision in the realm of drone operations should be rooted in your enterprise's specific requirements and objectives. It's crucial to align your choice with your operational needs and future goals.

FlytBase distinctly shines with its BVLOS-ready capabilities and its open integration approach. Its emphasis on regulatory approvals and flexibility in third-party integrations makes it a top choice for enterprises that value adaptability and a hands-on approach to drone operations. Moreover, its robust data security measures ensure that enterprises can operate with peace of mind.

FlightHub 2, on the other hand, excels in providing real-time situational awareness and a comprehensive suite of built-in features. It's tailored for those who prioritize in-depth insights and a holistic view of their drone missions.

While both platforms offer commendable features and DJI dock compatibility, FlytBase might have a slight edge for those who prioritize flexibility and BVLOS operations. However, if you're looking to explore further, there might be other platforms in the market that cater to niche drone operational needs.

Read more…

Go2 Quadruped Robot Personal accompany and life care robot / Introducing the Go2 sold by Brushlessgimbal.ca:

The New Generation Unitree Go2 returning with glory leads the bionic robotics world.
Introducing the New Go2 Intelligent Bionic Quadruped Robot - the cutting-edge 
marvel that's set to revolutionize robotics! With its new and improved 
features, this robot is a leap forward in technology.
Imagine a robot that sees the world like never before. Our Super Recognition 
System powered by 4D LIDAR L1 technology equips the Go2 robot with unparalleled 
perception, ensuring it navigates and interacts with its surroundings seamlessly.
Speed meets precision with a max running speed of approximately 5m/s and a peak 
joint torque of around 45N.m. This means the Go2 robot is not only swift but 
also incredibly powerful, opening up a world of possibilities for various applications.
Stay connected effortlessly with the wireless module that supports Wi-Fi6,
Bluetooth, and 4G. The Go2 robot is always in touch, no matter where it goes.
Don't worry about interruptions during crucial tasks – the ultra-long battery 
endurance, lasting approximately 2 to 4 hours, ensures 
extended operation without frequent recharging.
Experience the future of robotics with the Intelligent Side-follow System (ISS 2.0)
The Go2 robot can intelligently follow you, making it the 
perfect companion for various scenarios.
But that's not all – interaction reaches new heights as you take control with the 
iPhone app. Engage in exciting activities and enjoy intuitive control like never before.
With AI integration at its core, the Go2 robot learns and adapts, pushing the 
boundaries of what a robot can do. The future is here, and it's intelligent, 
dynamic, and brimming with potential – it's the Go2 Intelligent Bionic Quadruped Robot.
Go2 air and Go2 do not support secondary development

Go2 @ https://brushlessgimbal.ca/RTF-Ready-To-Play-Kits/Go2-Quadruped-Robot-Personal-Accompany-And-Life-Care-Robot-New
Read more…

To prolong the lifespan of your drone, regular maintenance ensures that the device performs at its best in future operations with fewer malfunctions and improved efficiency. Here are some maintenance methods divided into two situations:

1. Cleaning After Operation

The equipment needs to be cleaned after using corrosive liquids such as pesticides. You can follow the cleaning steps:

①Fill the tank with soapy water or the laundry powder. Start spraying to clean pesticide residues in the spraying system.

②Fill the tank with clean water and start spraying to wash off residual soapy water or the laundry powder in the spraying system. Place the empty tank in the aircraft and start spraying until all pipes are drained, avoiding damage to other devices during transportation or storage.

③Wipe the surface of the aircraft to remove potion stains and mud. Empty the tank and drain the pipes if the aircraft needs to be transferred or will not be used for an extended period.

2. Regular Maintenance

The regular maintenance should check and repair body structure, power system, spraying system, and power system timely.

①Drone frame: Check if any screw on the frame is loosening or missing, the components including landing gears, fuselage, arms, motors and antennas are in good condition, the connectors of each component are firmly in position, whether they have oxidized, and if the battery plug is deformed, check if the frame and components are breakages and cracks.

②Propulsion System: Check if the propellers, motors and ESCs are cracked or deformed, if any fixing screw is loosening or missing.

③Spray System: Check the wear of pump and tank, and check if the pump connectors have come loose or oxidized, etc.

④Power System: Before and after the use of the power device, you should check and clean each component including the battery plug and socket, ensuring that the power socket remains clean, dry and free of foreign objects.

Read more…

Here I will introduce how to upgrade the EPS200's turntable.

As the new turntable is embedded with metal sowing blades, thickened and reinforced, which is more wear-resistant and not easy to deform, prolonging the service life.

Step1: Loosen the bottom knob, and take out the old turntable.

12189367656?profile=RESIZE_584x

Step 2:Place the new turntable and align it with the screw hole positions, tighten the knob, then the turntable is upgraded successfully.

12189367681?profile=RESIZE_400x

 

EPS200Pro also deeply optimized steering gear, control module and cables, making the spreader more stable and better performance. The modular design makes all parts can be replaced separately and conveniently. Follow EFT to get the latest product trends and preferential information.

Read more…

DIY tracking drone

My Holybro 500 v2 is equipped with a Luxonis OAK-D-Lite camera (depthAI) and a RPi4. A python artificial intelligence (AI) code on the RPi4 detects objects (f.i. persons) using mobilenet ssd. The area of the enclosing object rectangle estimates the distance of the object, while the center determines the yaw of the drone. 2 PID controllers determine the forward speed and yaw of the drone. Once the track switch is on, the drone is controlled in guided mode by the custom python code. This algorithm yields a satisfactory tracking behavior as shown in the video.

Read more…

The stirring function of spreader can make blocky or sticky particles more uniform, and spreading operation smoother. Take EFT's spreader as an example to introduce how to quickly upgrade EPS200's stir bar to stir plate.

Step: Disassemble the spreader from the tank, remove the top screw, take out the stir bar, install the new stirring plate, then tighten the screw, the stirring bar is upgraded successfully.

12183782454?profile=RESIZE_710x

As you can see, the umbrella-shaped metal stirring plate increased the force area and stir with greater power, which makes sowing smooth and non-blocking.

Read more…

In the rapidly evolving landscape of drone operations, one of the most significant challenges is navigating beyond the line of sight (BVLOS). Operating BVLOS opens up endless possibilities for industries, but it also brings a host of crucial considerations to the forefront. Flight safety and risk mitigation take utmost importance among these considerations, as the safety of people, property, and the uncrewed aircraft itself is paramount.

Currently, most BVLOS operations require the presence of a vigilant visual observer (VO) who diligently scans the skies for potential obstacles and hazards. If they come across one, they must immediately notify the remote pilot in command to abort the drone's current mission. Therefore, it goes without saying how dangerous any form of communication lapse can be.

The Role of Visual Observers in BVLOS Flights

Before delving into the specifics of the various types and Detect and Avoid (DAA) technologies available, we must first understand the role of visual observers and why they are required. For example, the Federal Aviation Administration (FAA) in the United States specifies the operational requirements that must be met before flying unmanned aircraft systems. There is a requirement for a visual observer to perform the following roles for all drone operations that do not have a Part 107.33 waiver.

However, this human-centric approach can be both resource-intensive and limited in terms of continuous monitoring. There could be objects in the area of the drone operation, such as a small non-cooperative paraglider with no engine noise. It may be difficult for a human to accurately identify that and notify the remote pilot-in-command (PIC).

The Solution: AI-powered Detect & Avoid Technology

Detect and avoid (DAA) system enables operators to sense and avoid other aircraft and obstacles autonomously. These systems use sensors, such as radar, acoustic, and visual, to detect and avoid obstacles in the airspace. With DAA technology, drones can operate safely beyond visual line of sight, expanding their range of capabilities and applications.

Types of DAA Systems

There are several types of DAA systems, including radar, acoustic, and optical systems. Each of these systems has its own set of pros and cons, and the choice of system depends on the specific requirements of the drone operation.

Casia G: Iris Automation’s Ground-Based Detect and Alert System

Based on optical vision, Casia G is a ground-based surveillance system from Iris Automation to continuously monitor airspace and ensure UAS operations are safe from intruder aircraft. The sensors employ Iris' patented AI and computer vision technology to provide a full optical, 360° field of view for detecting and alerting to any cooperative or non-cooperative aircraft within a 2 km radius of the sensor's location.

Integration with FlytBase for Safe Remote Drone Operations

By integrating with the Casia G system, the FlytBasedashboard provides real-time data on intrusive aircraft, including type, live telemetry, and location on the map. Remote drone operators can monitor the status and radius of the Casia G sensor and receive immediate alerts if unauthorized aircraft are detected within their operating area.

BVLOS Approvals with Detect and Avoid Systems

The FAA has introduced a smart approach by incorporating "shielding" into their waivers, acknowledging that flying within 50 feet of the ground or a structure is likely safer for other aircraft. To achieve true BVLOS flights, the FAA requires some form of detect and avoid system, whether cooperative or non-cooperative, integrated into the operations.

The Way Ahead

While human visual observers remain important, technological solutions offer scalability and significant advantages. These solutions should be seen as tactical mitigation measures complementing other safety protocols. Cameras, sensors, and advanced safety technologies provide higher accuracy, continuous monitoring, and real-time responses, enhancing the safety of drone operations and opening doors to more advanced applications in the future.

Continued innovation and advancement in DAA technology are going to be essential for handling complex situations effectively and mitigating risks and safely integrating drones into the world’s third dimension.

Conclusion

The future of drone navigation is here, and it's called Detect and Avoid (DAA) systems. These systems, powered by AI and advanced sensor technology, are revolutionizing the way drones operate, especially in BVLOS operations. As we continue to innovate and advance in this field, we can expect to see safer, more efficient, and more scalable drone operations in the near future.

Read the Full Article Here: https://www.flytbase.com/blog/detect-and-avoid-technology

Read more…

Aerial spreading can protect land and seedlings, and is more and more used in agricultural work such as fertilization,seeding ,feeding etc., efficient and affordable. Based on the EPS200, the EPS200Pro deeply optimizes the stirring plate, turntable, and control Module,etc., better performance, and it can spread smoothly for heavy-duty mixed material operations and wet & sticky materials.

12175094282?profile=RESIZE_400x

 

Strong Stirring, Smooth Spreading

The newly upgraded EPS200Pro has metal stirring plate with a wider force area, the stirring plate can uniformly stir wet or blocked material under greater stirring power and separate sticky granules by strong rotation to avoid clogging. Umbrella-shaped metal design is easy to clean and anti-corrosion. Working with 360°adjustable valve, it can spread precisely and smoothly.

12175094301?profile=RESIZE_400x

Upgrade Turntable, Strong and Durable

The turntable is embedded with metal blades, which is strong, compressive and wear-resistant . Under high-speed rotation, the granules quickly falls and evenly distributed, with an effectively spreading width of 12m. For large area rice sowing, fertilization, slope fertilization can be done easily and quickly.

12175094470?profile=RESIZE_400x

 

Wiring Upgrade, Safe and Stable

EPS200Pro thicken cables and pins for enhanced current resistance and easy plug-in. The control module has also been deeply optimized, upgraded the internal motherboard circuit, the maximum power increased to 180w, and the wide voltage range expanded to 24V-80V, which can effectively prevent motherboard damage caused by over-voltage and over-current due to abnormal situations. The sealed waterproof design from the inside out, prolongs the lifespan , ensures the stable and efficient operation in various weather conditions.12175096870?profile=RESIZE_400x

 

Under the CAN control mode, It has speed feedback, valve angle feedback, blocking alarm, valve fault alarm, over-temperature, over-voltage alarm and other fault warning functions , which can real-time monitor the operation status, accurate fault diagnosis, and quick maintenance, thereby extending the product lifespan.

 

Universal Mounting, Multi-scenario Application

The EPS200Pro continues the tool-free quick release design with a universal interface, which can match with various types of aircraft. It's small and portable, very suitable for outdoor operations. It can sowing 0.5~6mm granules, applies to various scenarios such as grass seeding, fertilization, feeding etc.

12175099859?profile=RESIZE_400x

 

Both the EPS200Pro and EPS200 takes modular structure design. EPS 200 can quickly be upgraded by replacing some parts.

All parts can be placed on official store directly:

https://aheft.en.alibaba.com/

https://www.aliexpress.com/store/1101835339

 

 

Read more…

1. What parts are needed to assemble an agriculture drone?

To install a final agricultural drone, the following parts are required: drone frame, spreading system, spraying system, motor set, control system, and power system. All of these parts can be purchased separately. Here are some recommended suppliers, such as EFT's drone frame, SIYI's remote controller, JIYI's flight control, TATTU's battery. It is recommended to buy drone parts from Brand and reliable manufacturers,  which can ensure the stability of the whole drone and reduce the after-sales cost. The following are all the parts needed for a drone for your reference.12163670871?profile=RESIZE_710x

12163670476?profile=RESIZE_710x

2. What You Need to Know When Select Drone Parts?

 

①Frame selection. The priority consideration goes to whether to choose a four-axis or six-axis drone frame. Six-axis frame is more stable for large load, while four-axis frame with small size is convenient to transport and suitable for outdoor operation, it is easy for newbie to get started. Drone frames from big-brand manufacturers are highly recommended, which could be more stable and durable.

②Motor set selection. The outer diameter of the frame arm needs to be taken into account when purchasing, the wrong size will cause mismatch. The load also needs to be considered, the heavier the load, the larger the motor required. You can select an integrated motor set directly, or buy motor, Base, and paddles separately because welding them by yourself can be cheaper. If you buy the spare parts separately, please note that the paddles and motors must match the correct CW and CCW code, and each drone must have the same number of CW and CCW.

③Flight control selection. Standard flight control for agriculture drones such as K++ . The open-source flight control requires strong software development skills which is not recommended to beginners.

④Battery selection. There are smart batteries and pouch batteries for drones. The battery must be selected according to the frame to avoid overloading or insufficient power supply. The most common battery on the market is TATTU. The battery interface model and communication protocol also should be cared

Below is a chart of some frames with recommended motor and battery for reference.

12163672873?profile=RESIZE_710x

3. How to assemble? 2 Tutorial videos for your reference.

Assembly tutorial for 10-20L classic drone frame:

With simple structure and low cost, the classic drone frame with small load has always been a salable frame. It is very suitable for newbie or use in countries with 25kg restrictions. The assembly video below is for reference.

https://youtube.com/embed/r_A6ZNlqfu0

 

Assembly tutorial for 20L-30L plug-in drone frame

The popular plug-in drones can quickly switch between spraying and spreading. The tank and battery adopt the plug-in installation, which makes plug and unplug easier. For detailed assembly steps, please refer to the video below.

https://youtube.com/embed/iVDzFTXt5P8

Note: For security, it is recommended to finish all installation before inserting battery and powering on. The propellers are suggested to be installed after all debugging has been completed.

 

 

Read more…

Application of TF-Luna in Pixhawk

TF-Luna can directly be connected with the serial port of Pixhawk. TF-Luna can be used in flight device

for the purpose of altitude holding or obstacle avoidance. This document is suitable to Pixhawk adopts ArduCopter V4.0.0 or higher firmware.

Example for connecting Pixhawk:

 12163570060?profile=RESIZE_584x

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic Diagram of Connecting TF-Luna with TELEM 2 Interface (Serial Port 2) of Pixhawk

 

a)MissionPlanner configuration description of TF-Luna for the purpose of altitude hold

 

Connect the flight control board to MP.Attention:the installation height should be bigger than non-detection zone.Select [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

SERIAL2_PROTOCOL = 9    [Rangefinder option]

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

RNGFND_MIN_CM = 20    [It could be changed according to real demands and should be bigger LiDAR than non-detection zone,unit is cm]

RNGFND_MAX_CM = 200      [It could be changed according to real demands but should be smaller than

effective measure range of LiDAR,unit is cm]

RNGFND_GNDCLEAR = 15    [expressed in cm, depending upon mounting height of the module and

should be bigger LiDAR than non-detection zone]

RNGFND_ORIENT=25    [face down]

PRX_TYPE=0

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the altitude value from LiDAR sensor: double click the area of the Mission Planner, see the following picture:

12163575283?profile=RESIZE_584x

Select option sonarrange,see following picture:

12163575294?profile=RESIZE_584x 

The altitude distance from the LiDAR will be displayed in Sonar Range(meters),see the following picture:

 

b)  MissionPlannerconfiguration description of TF-Luna for the purpose of Obstacle Avoidance

12163576459?profile=RESIZE_584x 

It’s only recommended to be used in Loiter mode, the detail setting is as followings:

Connect the flight control board to MP. Attention:distance between UAV margin and LiDAR should be bigger than LiDAR non-detection zone.  Select  [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

AVOID_MARGIN=3 [Unit: m, set obstacle avoidance distance as required]

SERIAL2_PROTOCOL = 9    [Rangefinder option]

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

RNGFND_MIN_CM = 20      [It could be changed according to real demands and should be bigger LiDAR

than non-detection zone,unit is cm]

RNGFND_MAX_CM = 200    [It could be changed according to real demands but should be smaller than effective measure range of LiDAR,unit is cm]

RNGFND_GNDCLEAR = 15    [Unit: cm, depending upon mounting height of the module and should be bigger LiDAR than non-detection zone]

RNGFND_ORIENT=0      [It depends on the LiDAR’s real installation direction,0~7 is supported up to

now,see detail in MP]

PRX_TYPE=4        [RangeFinder should be selected for proximity sensor in obstacle avoidance mode]

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the target distance from the LiDAR:(distance from LiDAR in obstacle avoidance can’t be displayed in sonarrange option )press Ctrl+F button in keyboard,the following window will pop out:

12163575698?profile=RESIZE_710x

Click button Proximity,the following window will appear: 

The number in green color means the distance from LiDAR in obstcle avoidance mode  (the number only refresh when this window open,close,zoom in or zoom out,it doesn’t mean the real time distance from LiDAR and will not be influenced in Mission Planner version under v1.3.48,the problem could be solved by updating Mission Planner)

Attach:If TELEM 2 port has been used ,SERIAL4/5 interface could be used,the other setting are same

Figure 2 Schematic Diagram of Connecting TF-Luna with SERIAL4/5 Interface (Serial Port 4/5) of Pixhawk

Configuration Descriptions of Mission Planner

Connect  flight  control  board  to  MP,  Select  [Full  Parameter  List]  in  the  left  from  the  below  bar [CONFIG/TUNING] . Find and modify following parameters:

SERIAL4_PROTOCOL = 9 (LiDAR)

SERIAL4_BAUD = 115

Upon setting of these parameters, the other parameters should be same as Mission Planner configuration description of TF-Luna for the purpose of Obstacle Avoidance or Altitude Holding,then click [Write Params] on the right of the software to finish.

Read more…