(Equation 1) to determine the cord s characteristics. Hooke s Law represents the


 Elfreda Harrington
 5 years ago
 Views:
Transcription
1 Using Hooke s Law to Solve for Length of Bungee Cord Needed for Egg Drop Introduction This experiment is the second part of a three part experiment. The first two lead up to the final in which we aim to successfully drop an egg attached to the cord without the egg breaking. The first experiment we did involved using Hooke s Law (Equation 1) to determine the cord s characteristics. Hooke s Law represents the F =  kx (1) relationship of an ideal spring where F is the restoring force, k is the spring constant, and X is the displacement from equilibrium. The restoring force, weight, was found by multiplying the attached mass by the gravitational constant. We found the spring constant, k, of our bungee cord by measuring the displacement of cords varying in length after hanging different masses on it. The goal of the current experiment was to develop an equation that can be used to determine the length of cord necessary to drop our egg with. Similar to our first experiment, we sought to determine the spring constant, k. However, we did so dynamically in order to have a more accurate idea of what the displacement will be. This experimental design also assumes that the bungee cord acts as an ideal spring. This is a conservative system; thus, no energy is gained or loss according to the Classical Work Energy (CWE) Theorem. Equation 2 is a derivation relating the CWE theorem and Hooke s Law where m is the mass, h is the total length of the drop, Mgh = ½kx 2 (2) k is the spring constant, and x is the displacement of the bungee cord from equilibrium.
2 Methods Overall, we measured the displacement of a doubled up bungee cord by dropping a hanger with mass attached to it and measuring how far the bungee stretched from equilibrium. Length L (m) Mass m (kg) Displacement x (m) Step 1 Step 2 Step 3 Figure 1: Setup and procedure of the bungee cord system Figure 1 displays the order of the procedure. First, we doubled the bungee cord by folding it in half and knotting it, leaving a hoop to hang it from. We did this in order to find a more direct relationship between the spring constant and the length of the cord used per trial. Then, we attached the knotted cord to a metal bar and hung a measuring tape parallel. Each measurement off the measuring tape was taken from the center of the knot on the cord. Another knot was made at the bottom of each chosen length of cord, m. This length is the cord s equilibrium point (Figure 1: Step 1). A hanger was attached to the loop from the bottom knot. Four different masses, kg, were chosen to make four trials per length. The
3 masses were fastened with painter s tape to ensure their stability. The hanger was dropped straight down from where the bungee cord was connected to the metal bar (Figure 1: Step 2). We used an application on an ipad called Coach My Video to measure the displacement. The application allowed us to video the drop, zoom in afterwards, and play the video in small steps to see where on the measuring tape the knot hit full extension. This measurement is also known as the height, or h. Displacement, x, was calculated by subtracting l from h (Figure 1: Step 3). By deriving Equation 1, we found that the restoring force, F, was equal to the weight, or mass multiplied by gravity, of the hanger (Equation 3). Using algebra, we are able to find k (Equation 2). Graphically, a weight vs. displacement graph shows K = (mg)/x (3) that the spring constant was the slope of each linearized graph. Each k was then graphed vs. length of cord. The result of the linearized version of this graph gave us an equation of the relationship between length of cord and spring constant. This equation will be used to determine was length of cord to use when dropping our egg. Results The results indicate that as a double stranded bungee cord gets longer, the spring constant weakens (Table 1). Equation 3 provides support the results as k is inversely related to x. In Figure 2, the relationship is apparent based off the slope of each weight vs. displacement line.
4 Bungee Resting Length L (m, ± 0.01) Spring Constant k (uncertainty) (±0.71) (±0.36) (±0.16) (±0.03) Table 1: Spring constant per bungee resting length. Weight Vs. Displacement 1.7 Weight (N) 1.6 y = x y = x y = x y = x Length = 0.10 m Length = 0.16 m Length = 0.21 m Length = m Displacement (X) Figure 2: Weight versus displacement for each length of bungee cord. The slope of each line represents the spring constant, k.
5 The bungee cord s spring constants per resting lengths were then graphed in order to derive a formula that represents a relationship between the two (Figure 3). This formula will be the formula used in determining the length of bungee needed for the egg drop. K value K value Vs. Length of Bungee y = x Length of Bungee (m) Figure 3: Spring constant versus Length. The relationship between the two variables is shown; as the cord lengthens, k drops. The linearization of Figure 3 results in the final equation (Equation 4) needed to determine the length of cord necessary to successfully drop an egg without breaking. K = 0.881L (4) Discussion The goal of this experiment was to determine an equation that we could use to determine the length of cord we need. On the egg drop day, we will be given the
6 height that the egg will drop from and mass of the egg. Using this information, we can combine Equations 2 and 4 to solve for the length of cord necessary (Equation Mgh = ½ (0.881L )(h L) 2 (5) 5). The height of jump, length of cord, and length of elongation all relate to each other; the length plus elongation should equal the height. So in Equation 2, elongation, x, can be substituted for length subtracted from height, or h l. Equation 4 is solving for the spring constant, k, so 0.881L can be substituted in for k in Equation 4. On egg drop day, Equation 5 should result in the length of bungee cord we need in order to safely drop the egg from a certain height without it breaking. However, sources of uncertainty undoubtedly exist. First, we completed this experiment with the assumption that the bungee cord acts as an ideal spring. However, after reading the Bungee Journal, some of our peers concluded that their bungee cord did not behave like an ideal spring (Busch & Wilbur, section 5; Melkun & Towne, section 5). If their experiments generalize to our bungee cord, then we did not take other external forces acting on the system into account. This implication could result in the wrong length of cord being used; too long and the egg will crash or too short and the rebound might crack the egg. A further source of uncertainty is our bungee cord. During experimentation, the cord snapped on four different occasions. We were able to continue the experiment only by piecing together the broken pieces. We would have liked to have trials at longer lengths, but our cord did not allow for that. There are several implications of the cord snapping. First, we will be dropping the egg with a
7 completely different cord. Equation 5 was derived specifically from the first cord. It s a relationship based on that cord s spring constant and length of cord. A different cord could have a varying relationship, and the length of cord obtained might not translate to the new cord. We can try to avoid this by prestretching the cord as much as possible. Second, the limit of trial lengths that could be completed might have affected the result of Equation 5. The egg is going to be dropped from between 8 9m, and m is not the best representation of the actual height. Getting a longer length might have resulted in an equation that serves as a better model than Equation 5 will. A final source of error lies in how elongation, x, was measured. In theory, the application on the ipad should have worked fine. However, the quality of the video, after zooming in enough to see where on the measuring tape the cord stretched to, was very poor. We attempted to be as accurate as possible by counting the blurry lines as best as possible. Perhaps using just the ipad camera application and slow motion feature would have worked better Conclusion In conclusion, this experiment sought to unveil an equation that could be used to find the length of bungee cord necessary to safely drop an egg from a great height. Equation 5 takes the height of the drop, length of the cord, spring constant of bungee, mass of egg, elongation of bungee, and gravity into account. On drop day, we will enter in the mass of the egg and height of the drop to obtain the necessary length.
Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended.
Name: Johanna Goergen Section: 05 Date: 10/28/14 Partner: Lydia Barit Introduction: Bungee Constant per Unit Length & Bungees in Parallel Skipping school to bungee jump will get you suspended. The purpose
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationHOOKE S LAW AND OSCILLATIONS
9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a springmass oscillator. INTRODUCTION The force which restores a spring to its equilibrium
More informationBarbie Bungee Jump Lab
Cyriax, Pereira, Ritota 1 Georgia Cyriax, Sophia Pereira, and Michelle Ritota Mrs. Rakowski Honors Physics: Period 3 11 March 2014 Purpose: Barbie Bungee Jump Lab The purpose is to design a bungee jump
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationGENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring Apparatus: Pendulum clamp, aluminum pole, large clamp, assorted masses,
More informationPHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationEnergy transformations
Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement
More informationHOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
More informationReview D: Potential Energy and the Conservation of Mechanical Energy
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Nonconservative Force... 2 D.1.1 Introduction...
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationKinetic Friction. Experiment #13
Kinetic Friction Experiment #13 Joe Solution E01234567 Partner Jane Answers PHY 221 Lab Instructor Nathaniel Franklin Wednesday, 11 AM1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this
More informationConservation of Energy Physics Lab VI
Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationBarbie Bungee Jump. High School Physics
Barbie Bungee Jump High School Physics Kris Bertelsen Augusta Middle/High School Concept: The change in energy storage systems during a bungee jump activity demonstrates how energy can be transferred from
More informationLesson 3  Understanding Energy (with a Pendulum)
Lesson 3  Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More informationLesson 39: Kinetic Energy & Potential Energy
Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy
More informationDetermination of g using a spring
INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationPrelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
More informationObjective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (125) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)
Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (125) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable
More informationGeneral Physics Lab: Atwood s Machine
General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference
More informationPENDULUM PERIODS. First Last. Partners: student1, student2, and student3
PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,
More informationE X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
More informationDetermining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
More informationA) F = k x B) F = k C) F = x k D) F = x + k E) None of these.
CT161 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:
More informationNewton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of
Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed
More informationActivity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI6746) 1 Mass and Hanger Set (ME9348) 1 Base and Support Rod (ME9355) 1 Ruler, metric 1 Beaker,
More informationUnit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
More informationOscillations: Mass on a Spring and Pendulums
Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationEDUH 1017  SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017  SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationChapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power
Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this
More informationLaboratory Report Scoring and Cover Sheet
Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103100 Date _23 Sept 2014 Principle Investigator _Thomas Edison CoInvestigator _Nikola Tesla
More informationELASTIC FORCES and HOOKE S LAW
PHYS101 LAB03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described
More informationStudy Guide for Mechanics Lab Final
Study Guide for Mechanics Lab Final This study guide is provided to help you prepare for the lab final. The lab final consists of multiplechoice questions, usually 2 for each unit, and 4 workout problems
More informationAcceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
More informationThree Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
More informationA Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
More informationPAScar Accessory Track Set (1.2m version)
Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME6955 01207557A 1/01 PAScar Accessory Track Set (1.2m version) Model ME9435
More informationPhysics 3 Summer 1989 Lab 7  Elasticity
Physics 3 Summer 1989 Lab 7  Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationActivity P13: Buoyant Force (Force Sensor)
July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS
More informationModeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationSimple Harmonic Motion Experiment. 1 f
Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring
More informationConservative vs. Nonconservative forces Gravitational Potential Energy. Work done by nonconservative forces and changes in mechanical energy
Next topic Conservative vs. Nonconservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by nonconservative forces and changes in mechanical energy
More informationRotational Motion: Moment of Inertia
Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body
More informationExperiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
More informationSimple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More informationSample lab procedure and report. The Simple Pendulum
Sample lab procedure and report The Simple Pendulum In this laboratory, you will investigate the effects of a few different physical variables on the period of a simple pendulum. The variables we consider
More informationStanding Waves on a String
1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end
More informationProving the Law of Conservation of Energy
Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving
More informationTitle ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In
Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives Lesson Activity Barbie Bungee (7580 minutes) MSMA1 Lead In (1520 minutes) Activity (4550 minutes) Closure (10
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More information5.1 The First Law: The Law of Inertia
The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing
More informationWork and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa
Work and Energy Physics 1425 Lecture 12 Michael Fowler, UVa What is Work and What Isn t? In physics, work has a very restricted meaning! Doing homework isn t work. Carrying somebody a mile on a level road
More informationFREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
More informationSpring Force Constant Determination as a Learning Tool for Graphing and Modeling
NCSU PHYSICS 205 SECTION 11 LAB II 9 FEBRUARY 2002 Spring Force Constant Determination as a Learning Tool for Graphing and Modeling Newton, I. 1*, Galilei, G. 1, & Einstein, A. 1 (1. PY205_011 Group 4C;
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationCentripetal force, rotary motion, angular velocity, apparent force.
Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with adjustable radius and variable angular velocity.
More informationCh 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63
Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ
More informationGravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationExperiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010
Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density
More informationTemperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.
Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is
More informationWork. Work = Force x parallel distance (parallel component of displacement) F v
Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not
More informationphysics 111N work & energy
physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic
More informationPRIMARY CONTENT MODULE Algebra I Linear Equations & Inequalities T71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I Linear Equations & Inequalities T71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
More informationSequences. A sequence is a list of numbers, or a pattern, which obeys a rule.
Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the
More information8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
More informationEXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives
EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freelyfalling body varies with time to investigate whether the velocity
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More informationMore Quadratic Equations
More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationDiscrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
More informationChapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
More informationENERGYand WORK (PART I and II) 9MAC
ENERGYand WORK (PART I and II) 9MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:
More informationBuoyant Force and Archimedes' Principle
Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If
More informationAccelerometers: Theory and Operation
123776C Accelerometers: Theory and Operation The Vertical Accelerometer Accelerometers measure accelerations by measuring forces. The vertical accelerometer in this kit consists of a lead sinker hung
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationIn order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1D path speeding up and slowing down In order to describe motion you need to describe the following properties.
More information2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the xaxis and
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationFRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More informationMathematical Modeling and Engineering Problem Solving
Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with
More information2. To set the number of data points that will be collected, type n.
Force and Motion In this experiment, you will explore the relationship between force and motion. You are given a car with tabs, a string, a pully, a weight hanger, some weights, and the laser gate you
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationRoanoke Pinball Museum Key Concepts
Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.
More information