Building a UAS for a college course

I'm working with a team to develop a UAS for a computer science/engineering course.  We're a team of two computer science majors and two electrical engineering majors.

We're trying to build a user-operated multicopter that can detect and automatically avoid incoming physical threats (e.g. baseballs, rocks, birds, other drones).  We plan to integrate several sensors to determine (1) the speed and trajectory of nearby objects and (2) the speed and direction of the drone.  We have several ideas about how to implement it, but could use some advice.

First, we need a relatively small and agile copter.  We're trying to decide whether to get an off-the-shelf one or build one ourselves.  I've been looking into open source multicopter control software systems (e.g. Dronecode, LibrePilot), but most of the ones I've found seem to be for entirely autonomous drones.  Are there any open source libraries for user-operated copters?  And is anyone aware of pre-built drones capable of implementing such software?  Or would we better off building our own from scratch/getting a kit?

We're also trying to figure out whether we'll be able to add our detection and avoidance logic into an existing software system, or if we'll have to have the sensors connected to a microcontroller containing the logic, which would then communicate with the built-in controller to override user control and initiate a maneuver.

I've never worked with drones before, outside of flying a friend's small one, and all of my experience has been with software, so I'm not sure where to start.  Any advice would be greatly appreciated, and I'll be happy to offer clarification on anything!  Our project proposal is attached for reference.

Thanks!

CCUAS-Proposal.rtf

You need to be a member of diydrones to add comments!

Join diydrones

Email me when people reply –

Replies

  • Hi guys, what a cool project, great as you are such dedicated students who want to try something cool. Also find the idea exciting. How much time do you plan for this project? I could imagine that building one yourself will take you a lot more time in your implementation. But really cool. Have you already moved on?
  • How many problems students have because of their studies, I see this every time. In fact, everything is simple, if it's hard for you to study, then refer to https://essayontime.com.au/harvard-referencing-generator where you will find all the material you need without any problems. I recently used the harvard referencing generator there, did not regret anything, everything looks very amazing.
  • This is absolutely amazing, I like it!
  • without years of visual computing programming and years of electronic experience, you are not getting anywhere.. sorry.

    if you could have a grasp of this:

    http://groups.csail.mit.edu/robotics-center/public_papers/Barry15a.pdf

    then try get hardware from digilent.com

    http://groups.csail.mit.edu/robotics-center/public_papers/Barry15a.pdf
  • Thank you!  Do you know of any good "getting started" resources for fpga?

    Jerry Giant said:

    Hi, i have a glance on your pages, if you can do advanced fpga visual design, there might be a chance to satisfy your on-board computing requirement. 

  • Hi, i have a glance on your pages, if you can do advanced fpga visual design, there might be a chance to satisfy your on-board computing requirement. 

This reply was deleted.

Activity

DIY Robocars via Twitter
20 hours ago
DIY Robocars via Twitter
RT @NVIDIADRIVE: Season Beta has arrived! Check out the first race of the @roborace season, livestreaming from Anglesey Circuit Sept. 24-26…
yesterday
DIY Robocars via Twitter
RT @IndyAChallenge: Here is the ROS-based small-scale vehicle platform showing the ROS Visualization (Rviz) screen with multiple ROS nodes…
yesterday
DIY Robocars via Twitter
RT @IndyAChallenge: Here is Black & Gold Autonomous Racing's simulated racecar running a lap @IMS and showing the team's code overtaking ot…
yesterday
DIY Robocars via Twitter
yesterday
DIY Robocars via Twitter
RT @donkey_car: New Maintainers! Donkey Car 4.0 and more! Here is our September Newsletter! https://donkeycar.substack.com/p/september-donkey-newsletter?r=2ji2t&utm_campaign=post&utm_medium=web&utm_source=copy
yesterday
DIY Robocars via Twitter
RT @chr1sa: Kinda cool that we just hit 2,500 members of our Bay Area self-driving car racing league. More than 10k globally. Fast, cheap…
yesterday
DIY Robocars via Twitter
RT @chr1sa: Our next @DIYRobocars virtual AI car race is next Saturday. Compete from home using the @donkey_car simulator -- no physical ca…
Sunday
DIY Robocars via Twitter
RT @RoboticMasters: Students from @Sydney_Uni working hard on improvements and changes to @donkey_car simulator. @diyrobocars @adafruit…
Sunday
DIY Robocars via Twitter
Practice virtual race this Saturday; the real thing will be on Oct 3 https://www.meetup.com/DIYRobocars/
Sep 23
DIY Robocars via Twitter
Sep 23
Derrick Davies liked lisa TDrones's profile
Sep 23
DIY Robocars via Twitter
Sep 21
DIY Robocars via Twitter
RT @SahikaGenc: AWS DeepRacer & Hot Wheels Track https://youtu.be/4H0Ei07RdR4 via @YouTube
Sep 14
DIY Robocars via Twitter
Sep 8
DIY Robocars via Twitter
RT @davsca1: We are releasing the code of our Fisher Information Field, the first dedicated map for perception-aware planning that is >10x…
Sep 8
More…