Developer

Copter-3.3 beta testing

Warning #1: an issue has been found with Tower's Pause button which can cause the vehicle to fly to an old position if the vehicle has not sent a position update to Tower in some time.

Warning #2: Copter-3.3.2 fixes a bug found in Copter-3.3.1's desired climb rate initialisation which could lead to a sudden momentary drop when switching from Stabilize or Acro to AltHold, Loiter or PosHold.

Warning #3: Copter-3.3.2 fixes an issue found in Copter-3.3.1 which could lead to hard landings in RTL or AUTO if the WPNAV_SPEED_DN was set too high (i.e. >400 or 4m/s) and/or the WPNAV_ACCEL_Z was set too low (i.e. <100 or 1m/s/s).

Warning #4: a bug was found in Copter-3.3 which could cause a sudden crash if you abort a Take-off initiated from a ground station.  Video description is here.  The bug is fixed in Copter-3.3.1 so we recommend upgrading.

Note #1: AC3.3-rc8 corrected a long standing bug in the HDOP reporting.  HDOP values will appear about 40% lower than previously but this does not actually mean the GPS position is better than before.
Note #2: if upgrading from AC3.2.1 the vehicle's accelerometer calibration needs to be done again.
Note #3: set SERIAL2_PROTOCOL to "3" and reboot the board to enable FrSky telemetry like in previous versions.
Note #4: the wiki will be updated over the next few weeks to explain how to use the new features

Copter-3.3.1 is available through the mission planner.  The full list of changes vs AC3.2.1 can be see in the ReleaseNotes and below are the most recent changes since AC3.3.

Sadly this version (and all future versions) will not run on the APM2.x boards due to CPU speed, flash and RAM restrictions.

Changes from 3.3:

1) Bug fix to prevent potential crash if Follow-Me is used after an aborted takeoff

2) compiler upgraded to 4.9.3 (runs slightly faster than 4.7.2 which was used previously)

Changes from 3.3-rc11:

1) EKF recovers from pre-arm "Compass variance" failure if compasses are consistent

Changes from 3.3-rc10:

1) PreArm "Need 3D Fix" message replaced with detailed reason from EKF

Changes from 3.3-rc9
1) EKF improvements:
    a) simpler optical flow takeoff check
2) Bug Fixes/Minor enhancements:
    a) fix INS3_USE parameter eeprom location
    b) fix SToRM32 serial protocol driver to work with recent versions
    c) increase motor pwm->thrust conversion (aka MOT_THST_EXPO) to 0.65 (was 0.50)
    d) Firmware version sent to GCS in AUTOPILOT_VERSION message
3) Safety:
    a) pre-arm check of compass variance if arming in Loiter, PosHold, Guided
    b) always check GPS before arming in Loiter (previously could be disabled if ARMING_CHECK=0)
    c) sanity check locations received from GCS for follow-me, do-set-home, do-set-ROI
    d) fix optical flow failsafe (was not always triggering LAND when optical flow failed)
    e) failsafe RTL vs LAND decision based on hardcoded 5m from home check (previously used WPNAV_RADIUS parameter)

Thanks for your testing!

You need to be a member of diydrones to add comments!

Join diydrones

Email me when people reply –

Replies

  • Oooh, Alexmos support...to do what exactly?

    • Hi,

      i tried to find some wiki pages about this... ...no chance... 

      Is there just no wiki page, or did i just not find it? ;)

      Thanks  a lot!!!

      • Developer

        Johannes,

        There's no wiki page for the alexmos setup yet I'm afraid although it's on the to-do list.

        • Hi Randy!

          I have searched the various sources and cannot find anything conclusive on alexmos/basecam support, especially the serial capability. Does this use the UART on the SimpleBGC otherwise intended for a bluetooth module, or something else? Or was this abandoned for StoRM32-only support?

          If you can give me some direction I am happy to help update the documentation, as I strongly suspect others are wondering the same to do some Points of Interest.

          Cheers.

    • I have an older version of Alexmos board. On previous firmware, it was working fine with PWM RC input. The board is connected to pixhawks Aux1 and configured through the gimbal settings in mission planner. In AC3.3rc1, the same setup fails to work. I think it is related to the feature of the firmware that supports Alexmos boards through the serial interface. But my Alexmos board is not capable of Serial controls. The only way that made my setup work is by directly connecting the RC in of the Alexmos board to the receiver module thus allowing it to work with PWM.
    • Developer

      Euan,

      At the moment, it simply sends angle demands to the gimbal via a serial interface (we need a wiki to describe how to connect the serial cable and also not all alexmos gimbal control boards expose the requierd pins).  In the first stage it's not too different from using a pwm interface although the setup should be easier.  This release also adds support for the do-mount-control mission item so besides ROI, a camera can be pointed to specific angles as part of a mission.

      • This is very interesting. We do use the 3 axis 32 bit Alexmos controller. on the Pixhawk, which serial port is the one driving the Alexmos board?

      • nice! :) thanks for the info. Currently I have alexmos board on my gimbal, with pins for RC in for pitch, roll, yaw and CMD which can be directly connected to a receiver. But I opted to connect them on the RC10 and RC11 outputs of pixhawk then configured the stabilization on the Gimbal page in the Mission Planner. I still cannot see the difference between my existing setup and the new feature that supports alexmos gimbal cotroller. Maybe I will find out later. One thing I look forward to is the new feature to adjust the pitch to certain angles during misison flights :) this would definitely be good. I was pondering about that way back on the release of AC3.2.

    • to do what it says in 8 c I would imagine :)...to send demands to it.

  • Randy,

    Will one of the releases allow remapping channels so that we can utilize different inputs for mode changes. 

    Thanks

    Joe

This reply was deleted.

Activity

DIY Drones via Twitter
RT @MarvelmindMaxim: Extreme precision for 60 swarming robots. #marvelmind #autonomousrobotics #robotics #swarmrobotics #rtls #ips #indoor…
yesterday
DIY Drones via Twitter
RT @MarvelmindMaxim: Precise (±2cm) tracking for racing boats and autonomous boats. Works outdoor and indoor. #autonomous #AutonomousVehic…
yesterday
DIY Drones via Twitter
RT @MarvelmindMaxim: Helping PixHawk folks to fly autonomous quadcopters using PX4 and ArduPilot. https://marvelmind.com/drones/ Equally suitab…
yesterday
DIY Robocars via Twitter
RT @chr1sa: The @DIYRobocars @donkey_car virtual AI car race is starting in 15 minutes! Watch it live on Twitch https://www.twitch.tv/mossmann3333 htt…
Saturday
DIY Robocars via Twitter
RT @chr1sa: Don't miss our monthly @DIYRobocars @donkey_car virtual AI car race tomorrow at 10:00am PT live on Twitch. Head-to-head racing…
Friday
DIY Robocars via Twitter
RT @sparkfun: Our completed tutorial on building an @NVIDIA Jetson Nano-powered @Sphero RVR gets your bot up and running via teleoperation…
Thursday
DIY Robocars via Twitter
RT @SmallpixelCar: Freeway test https://t.co/4V5tV9lhIP
Thursday
DIY Robocars via Twitter
Very small autonomous cars racing, thanks to an overhead camera: https://control.ee.ethz.ch/research/team-projects/autonomous-rc-car-racing.html
Jul 29
DIY Robocars via Twitter
Jul 29
DIY Robocars via Twitter
Jul 29
DIY Robocars via Twitter
RT @chr1sa: Don't miss our virtual AI car race this Saturday! Real developers + virtual cars =🏎️🏎️🏎️ Head-to-head battles with thrills, sp…
Jul 28
DIY Robocars via Twitter
Jul 27
DIY Robocars via Twitter
RT @usashirou1: Jetson nano by Isaac Kaya #jetson https://t.co/Mu1N0CyQkN
Jul 23
DIY Robocars via Twitter
RT @GPUsolution: JetRacer mady by Iflytek company #JetsonNANO #Nvidia https://t.co/MimTymIwge
Jul 23
DIY Robocars via Twitter
RT @openmvcam: I love this: Mega or Mini? Image Classification on the 1MB OpenMV Cam H7 by Ish Ot Jr. in OpenMV, Edge Impulse, Internet of…
Jul 23
DIY Robocars via Twitter
RT @RoboticMasters: This is looking pretty good... but still needs a bit more refinement. Pure OpenCV Turning Sign Detection. No Tensorfl…
Jul 23
More…