Full web article 

 

ROMOS from Micron, a so-called “drift-free” IMU.
ROMOS from Micron, a so-called “drift-free” IMU. Image credit: Micron Digital.

 

Micron’s ‘Drift-Free’ IMU

According to Micron, ROMOS emits drift-free orientation and position data in millimeters to a host device or processor. Unlike conventional IMUs, additional external reference signals, such as those from GPS, are not required to compensate for drift error. Position data is generated at a high rate through internal MEMS-based inertial sensors for direct use in the host application. 

According to Micron, ROMOS is able to achieve unprecedented levels of performance with “core calculations in a higher-dimensional space before dropping down to three dimensions.” Understandably, the company has remained tight-lipped when it comes to the details. 

What is known, however, is that the ‘ROMOS process’ involves several steps. Raw sensor data that is generated much in the same way as any other IMU. This data then goes through primary filter algorithms, a static calibration filter and Micron’s proprietary RealMotion algorithm. Before ROMOS outputs the final position calculation, it goes through an AI smoothing function. 

You need to be a member of diydrones to add comments!

Join diydrones

Email me when people reply –

Activity

Neville Rodrigues liked Neville Rodrigues's profile
Jun 30
Santiago Perez liked Santiago Perez's profile
Jun 21
More…