Pls help, how to change behavior of servo to like this?

Hi guys. I was building a monster, it's a proof model of fiying car. The Control System is like CCPM, but not exactly same.

I want change servo throws to half:

3690996517?profile=original

This concept is the air one way in to three way out, 3 way out control flow rate by servo.

concept-3.JPG

Because the structure of my monster wasn't same as traditional helicopter, so control system need do some change. 

3690996530?profile=original

Action to show : Pitch

pitch-2.gif pitch-1.gif

Action to show : Roll

roll-1.gif roll-2.gif

Action to show : Yaw

yaw.gif

If it's too small can't see, you can go there look bigger pic:

http://spoflycar.blogspot.com/p/control-system.html

I want know, How to change code to do servo throw limit half.  I tried set param of servo in "Mission Planner" but failed.

I am not good at coding, so can't found the place where the servo control. If you know this, please tell me, i want try change it. Thank you.

You need to be a member of diydrones to add comments!

Join diydrones

Email me when people reply –

Replies

  • Interesting...  yeah, you'll need some custom code to do this.  What you want is all within AP_MotorsHeli.cpp, which is in the AP_Motors library.

    Specifically, these functions would be involved:

    void AP_MotorsHeli::init_swash()
    {

    // swash servo initialisation
    _servo_1->set_range(0,1000);
    _servo_2->set_range(0,1000);
    _servo_3->set_range(0,1000);
    _servo_4->set_angle(4500);

    // ensure _coll values are reasonable
    if( collective_min >= collective_max ) {
    collective_min = 1000;
    collective_max = 2000;
    }
    collective_mid = constrain(collective_mid, collective_min, collective_max);

    // calculate throttle mid point
    throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0;

    // determine roll, pitch and throttle scaling
    _roll_scaler = (float)roll_max/4500.0;
    _pitch_scaler = (float)pitch_max/4500.0;
    _collective_scalar = ((float)(collective_max-collective_min))/1000.0;
    _stab_throttle_scalar = ((float)(stab_col_max - stab_col_min))/100.0;

    if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing

    // roll factors
    _rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
    _rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
    _rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));

    // pitch factors
    _pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
    _pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
    _pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));

    // collective factors
    _collectiveFactor[CH_1] = 1;
    _collectiveFactor[CH_2] = 1;
    _collectiveFactor[CH_3] = 1;

    }else{ //H1 Swashplate, keep servo outputs seperated

    // roll factors
    _rollFactor[CH_1] = 1;
    _rollFactor[CH_2] = 0;
    _rollFactor[CH_3] = 0;

    // pitch factors
    _pitchFactor[CH_1] = 0;
    _pitchFactor[CH_2] = 1;
    _pitchFactor[CH_3] = 0;

    // collective factors
    _collectiveFactor[CH_1] = 0;
    _collectiveFactor[CH_2] = 0;
    _collectiveFactor[CH_3] = 1;
    }

    // servo min/max values
    _servo_1->radio_min = 1000;
    _servo_1->radio_max = 2000;
    _servo_2->radio_min = 1000;
    _servo_2->radio_max = 2000;
    _servo_3->radio_min = 1000;
    _servo_3->radio_max = 2000;

    // mark swash as initialised
    _swash_initialised = true;
    }

    //
    // heli_move_swash - moves swash plate to attitude of parameters passed in
    // - expected ranges:
    // roll : -4500 ~ 4500
    // pitch: -4500 ~ 4500
    // collective: 0 ~ 1000
    // yaw: -4500 ~ 4500
    //
    void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
    {
    int16_t yaw_offset = 0;
    int16_t coll_out_scaled;

    if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
    // check if we need to free up the swash
    if( _swash_initialised ) {
    reset_swash();
    }
    coll_out_scaled = coll_in * _collective_scalar + _rc_throttle->radio_min - 1000;
    }else{ // regular flight mode

    // check if we need to reinitialise the swash
    if( !_swash_initialised ) {
    init_swash();
    }

    // rescale roll_out and pitch-out into the min and max ranges to provide linear motion
    // across the input range instead of stopping when the input hits the constrain value
    // these calculations are based on an assumption of the user specified roll_max and pitch_max
    // coming into this equation at 4500 or less, and based on the original assumption of the
    // total _servo_x.servo_out range being -4500 to 4500.
    roll_out = roll_out * _roll_scaler;
    roll_out = constrain(roll_out, (int16_t)-roll_max, (int16_t)roll_max);

    pitch_out = pitch_out * _pitch_scaler;
    pitch_out = constrain(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max);

    // scale collective pitch
    coll_out = constrain(coll_in, 0, 1000);
    if (stab_throttle){
    coll_out = coll_out * _stab_throttle_scalar + stab_col_min*10;
    }
    coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000;

    // rudder feed forward based on collective
    if( !ext_gyro_enabled ) {
    yaw_offset = collective_yaw_effect * abs(coll_out_scaled - throttle_mid);
    }
    }

    // swashplate servos
    _servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
    _servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
    if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) {
    _servo_1->servo_out += 500;
    _servo_2->servo_out += 500;
    }
    _servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500);
    _servo_4->servo_out = yaw_out + yaw_offset;

    // use servo_out to calculate pwm_out and radio_out
    _servo_1->calc_pwm();
    _servo_2->calc_pwm();
    _servo_3->calc_pwm();
    _servo_4->calc_pwm();

    // actually move the servos
    _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out);
    _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out);
    _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out);
    _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out);

    // to be compatible with other frame types
    motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out;
    motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out;
    motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out;
    motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;

    // output gyro value
    if( ext_gyro_enabled ) {
    _rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
    }
    }

This reply was deleted.

Activity