Sr.Telemaster CG calculation, lifting tail airfoil.

I have an 8' Senior Telemaster because of its High Lift Capability.

And one argument I have is with the way common RC flyer's Balance the Telemaster's CG before flight.

I seek a solution for calculating the CG that provides input for the lifting tail of the Telemaster.  Because such a solution would allow the airframe to share lifting duties between the main wing and the lifting tail.

 

The "experienced flyers" at my airfield insist on balancing the plane as you would a non-lifting tail RC plane.  I feel they are not taking into account the lifting tail of the Telemaster.  Where CG balancing between the lift capability of the main wing and tail is achieved.

 

I believe that when balancing the CG on the Telemaster it should be tail heavy when balancing the "traditional" way.

 

Can anyone help me with this. I believe it would increase the actual lift capability of the plane.

You need to be a member of diydrones to add comments!

Join diydrones

Email me when people reply –

Replies

  • The replies by Beal and others describe how the cg position interacts with stability. A follow-on to the comment that the F/A-!8E/F landing with stabilator down deflection under control of the EFCS: A basic Ardupilot has the potential capability of stabilizing an unstable pitch loop(without increasing the max load). A knowledge of the pitch moment of inertia and other control loop parameters is required.

    Increasing power and angle of attack increases payload with a penalty of reducing the maximum g the airframe can sustain under maneuvers. Again an Ardupilot g-limiting control law could be written to keep the plane in a suitable g envelope. For F/A-18 fans, watch the rudders on take off.  They are each rotated to full inboard deflection, because the stabilator exerts insufficent aero moment to raise the nose on carrier take-off.  The pilot grabs the two grab bars, the EFCS goes off the cat with full control of the stabilator and rudder fade-out. The pilot does not take control until normal climbout is established.

     

    Some DIYer out there may have a wind tunnel under construction to build interesting and useful unstable aircraft.  Technology change is exponential.

     

    Mike Cowan

  • A "TAIL" heavy plane is harder to control. Most R/C planes have a CG range. I suggest to install what you want then "CG" the plane according to MFG spec.
  • Moving the CG will neither increase nor decrease the aircraft's lifting capacity, it may make the airplane more pleasant to fly. The only things that can affect its steady state lifting capacity are 1) motor power, 2) airfoil shape(s), 3) lifting area and to a tiny extent 4) tail vs wing incidence (by affecting parasitic drag).

     

    You can fly with a CG further back than normal however you will want to be careful. The easy way to test it is first make sure all the incidences are correct - this is important, use an hanger 9 angle pro or something similar. Then check that the airplane trim does not change much with airspeed - ie no elevator trim change from say 0% to 75% throttle, and no trim change from level flight to say a 45 degree dive. Once that is all correct check the actual elevator trim, ie look at the elevator surface, if its not flat then you can move the cg to improve the aerodynamics. Move it only a little at a time and check nothing else changes, ie the test's listed above are still ok. There will be some interaction with the above changes, for example changing the motor thrust line will change / mask changes in elevator trim - its an iterative process.

  • Developer

    The pitch stability is based on the CG being in front of the aerodynamic center.  Just because the tail is a "lifting tail" vice a negative lifting tail doesn't actually move the aerodynamic center.  It just makes the negative pitching moment that much harder to balance.  You can balance that moment by either extra elevator deflection or by moving the CG aft.  Moving the CG aft is making it more efficient for sure but still at the cost of Pitch stiffness. 

     

    This is definition of the F/A18 A/B vs the F/A 18 E/F  Look at pics of the Super hornet landing.  It it tail heavy to the point of requiring conventionally opposite elevator control deflection.  This makes it clearly unstable but the AFCS computer is flying, not the pilot. 

     

    So to answer your question....  Yeah move the CG aft to carry more of the load but know that the pitch stiffness will still decrease. 

     

This reply was deleted.

Activity

DIY Robocars via Twitter
RT @a1k0n: @SmallpixelCar @diyrobocars It's just something that's easy to track with chroma keying. I ended up using different colors on th…
yesterday
DIY Robocars via Twitter
yesterday
DIY Robocars via Twitter
RT @TinkerGen_: "The Tinkergen MARK ($199) is my new favorite starter robocar. It’s got everything — computer vision, deep learning, sensor…
Nov 23
DIY Robocars via Twitter
Nov 23
DIY Robocars via Twitter
RT @roboton_io: Join our FREE Sumo Competition 🤖🏆 👉 https://roboton.io/ranking/vsc2020 #sumo #robot #edtech #competition #games4ed https://t.co/WOx…
Nov 16
DIY Drones via Twitter
First impressions of Tinkergen MARK robocar https://ift.tt/36IeZHc
Nov 16
DIY Robocars via Twitter
Our review of the @TinkerGen_ MARK robocar, which is the best on the market right now https://diyrobocars.com/2020/11/15/first-impressions-of-tinkergen-mark-robocar/ https://t.co/ENIlU5SfZ2
Nov 15
DIY Robocars via Twitter
RT @Ingmar_Stapel: I have now explained the OpenBot project in great detail on my blog with 12 articles step by step. I hope you enjoy read…
Nov 15
DIY Robocars via Twitter
RT @DAVGtech: This is a must attend. Click the link, follow link to read the story, sign up. #chaos2020 #digitalconnection #digitalworld ht…
Nov 15
DIY Robocars via Twitter
RT @a1k0n: Got a new chassis for outdoor races (hobbyking Quantum Vandal) but I totally didn't expect that it might cause problems for my g…
Nov 11
DIY Drones via Twitter
First impressions of the Intel OpenBot https://ift.tt/36qkVV4
Nov 10
DIY Robocars via Twitter
Nov 9
DIY Robocars via Twitter
Excellent use of cardboard instead of 3D printing! https://twitter.com/Ingmar_Stapel/status/1324960595318333441
Nov 7
DIY Robocars via Twitter
RT @chr1sa: We've got a record 50 teams competing in this month's @DIYRobocars @donkey_car virtual AI car race. Starting today at 10:00am…
Nov 7
DIY Robocars via Twitter
Nov 6
DIY Robocars via Twitter
RT @a1k0n: Car's view, using a fisheye camera. The ceiling light tracking algorithm gave me some ideas to improve ConeSLAM, and having grou…
Nov 5
More…