3D Robotics

ArduPilot (Legacy) main page

 

3689315381?profile=original

 

[This original ArduPilot board, now called the "Legacy ArduPilot" is no longer produced or officially supported by the DIY Drones dev team, and this page is maintained just for historic reasons. However, there are still many users of it out there and it still works fine. The user group for Legacy ArduPilot users, for both thermopile and IMU use, is here.]

 

ArduPilot is a full-featured autopilot based on the Arduino open-source hardware platform. It uses infrared (thermopile) sensors or an IMU for stabilization and GPS for navigation. It is the autopilot used to win the 2009 Sparkfun Autonomous Vehicle Competition.

The hardware is available from Sparkfun for $24.95. An expansion board ("Shield") kits that includes an airspeed sensor, a 3.3v power regulator for 3.3v GPS modules and other sensors and cables and connectors for easy attachment of the XY and Z sensors, is available from our own store for $57.20.

 

User f

ArduPilot features include:

  • Can be used for an autonomous aircraft, car or boat.
  • Built-in hardware failsafe that uses a separate circuit (multiplexer chip and ATTiny processor) to transfer control from the RC system to the autopilot and back again. Includes ability to reboot the main processor in mid-flight.
  • Multiple 3D waypoints (limited only by memory)
  • Altitude controlled with the elevator and throttle
  • Comes with a 6-pin GPS connector for the 4Hz uBlox5 or 1hz EM406 GPS modules.
  • Has six spare analog inputs (with ADC on each) and six spare digital input/outputs to add additional sensors
  • Supports addition of wireless modules for real-time telemetry
  • Based on a 16MhZ Atmega328 processor. Total onboard processing power aprox 24 MIPS.
  • Very small: 30mm x 47mm
  • Can be powered by either the RC receiver or a separate battery
  • Four RC-in channels (plus the autopilot on/off channel) can be processed by the autopilot. Autopilot can also control four channels out.
  • LEDs for power, failsafe (on/off), status and GPS (satellite lock).


Resources:

ArduPilot requires the free Arduino IDE to edit and upload the code to the ArduPilot board.



The code is currently optimized for the Mutiplex EasyStar three-channel powered glider and FMA sensors, but can be modified for other aircraft and sensors. It uses the rudder/ailerons and elevator to maintain level flight and navigate to GPS waypoints. It supports a desktop setup utility and ground station software. It also includes a "fly-by-wire" mode that simply stabilizes RC flight. The main code is ArduPilot2.x.zip in the download section of our Google Code repository, where x is the latest version.

What you need to make a fully-functional autopilot:


Open source extras:

  • If you want to build your own board from scratch, the necessary files and component lists are here.
  • [Note: you shouldn't need this, since this code is loaded on the ArduPilot board at the factory] Latest multiplexer code (for the board's second processor, an Attiny, which runs the failsafe system) is here.
    Instructions for loading this code are here.



Recommended UAV setup:

3689303688?profile=original


Airframe option one: Hobbico SuperStar (49" wingspan, $95, shown above). This is an inexpensive, good flying high-wing trainer with ailerons. It can be hand launched in a park or take off from a runway, and replacement parts are readily available in case of a crash. If you want much better performance with this aircraft, you can upgrade it to a brushless motor, speed controller and a LiPo battery. [If you don't already have one, you'll also need a balancing charger and power supply.] Note: any stable aircraft with both ailerons (for stabilization) and rudder (for navigation) can work, so feel free to experiment with what you've got.

3689313666?profile=original


Airframe option two (recommended for ArduPilot 2.x): EasyStar (shown above). Performance can be improved with the modifications described in this post.

You'll also need:

  • A six or seven channel RC transmitter and receiver, with at least one toggle switch (ideally three-position but two-position will work, too, although you will have to mix channels to have access to both autopilot modes in the air), such as the Futaba 7C.
  • Some servos (at least three for ArduPilot 1.0; at least two for ArduPilot 2.x) and at least three female-to-female servo cables to connect the RC receiver to ArduPilot.


Cool optional extras for your UAV:

E-mail me when people leave their comments –

You need to be a member of diydrones to add comments!

Join diydrones

Comments

  • 3D Robotics
    For blimps we have blimpduino. Check it out in the tabs above.
  • Moderator
    @Jeffrey, I don't know which sensor you mean, but the Ardupilot project is the lowest cost system there is!

    This technology is not to the point that it's for sale at Walmart... keep trying.
  • Hii guys.
    I want to use ardupilot and the other accesories on my blimp,
    is it possible to modify ardupilot to control my blimp?
    Although there are 2 servos and 1 dc motor on an aircraft,there are 1 servo motor and 2 dc motors.
    if possible,what should I do ?
    help please :)
  • I think you should lower the price of the sensor, this will allow more people to afford building a UAV .
  • moreover; or any other type of GPS, fluxgate compass.....
  • Is it possible to connect iPAQ GPS with ardupilot circuit or any type of GPS. Cuz I would like to use the ardupilot circuit for sailing boat application to control rudder i.e. to set the rudder in autopilot mode by using ardupilot.
    I notice the ardupilot can only function by using GPS module like EM406 or 5HZ type..Please advise me if the ardupilot is capable to control it by using other type of GPS i.e. not a programmable GPS but with display unit like iPAQ or Raymarine GPS's...All the best..
  • Moderator
    Do yourself a favour, buy an EasyStar instead!
  • can i have a drawings to build my own predator model. can anyone be of help
  • Hi ! My .90 kyosho trainer is finally ok, after 2 months is doing the waypoints perfectly, the ground test never worked for my setup (first plane always flyed inverted "upside down", I started disabling the Ardupilot stabilization, leaving the walkaround mode while keep flying with the help of FMA Copilot, later copilot was removed, roll and pitch values adjusted, now everything is near perfect. Q.: Can we use the extra channel (the unused one) for some kind of trigger, like take a snapshot via servo linked to small camera of just a onboard LED flash everytime the plane hit a waypoint ? Thank you
This reply was deleted.