Q: You decided to go with an IR sensor (aka "thermopile", shown) rather than a gyro and accelerometer in an IMU for the first version. Can you explain how you came to that decision?
I have found that even without fancy code, the thermopile is a surprisingly robust solution; a LOT of bang for the buck. This keeps my AttoPilot in the spirit of "simplest low cost 3 axis autopilot.
My first flights were with very stable aircraft (the Miss2 old-timer). Even with this plane, over-steering was a problem at times. I realized some method of attitude sensing was a strict requirement for any serious autopilot.
I started out flying the FMA CoPilot [which is based on the IR sensor show above] only as the typical RC usage on a small unstable homemade plane with no dihedral and just aileron/elevator flight control. After experimentation, I realized that AttoPilot could skew the inputs to the CoPilot control box, and all of a sudden I had AttoPilot flying that same small unstable plane (at 70+km/h) even better than the raw AttoPilot used to fly the polyhedral winged Miss2.
Later, I reverse-engineered the CoPilot sensor head, and figured out how to interface to it directly to AttoPilot via 2 channel ADC (BTW, there is mis-information on the Paparazzi website regarding the FMA sensor head; it say CoPilot head is designed for 5V, but in fact it is actually a 3.3V device, so you don't need to replace resistors to make the gains correct), so now AttoPilot has direct use of the thermopile data, and therefore has direct idea of pitch and roll angle for a robust flight control solution that will never over or under-control.
I am integrating GPS and barometer data with the thermopile, so the solution is very robust, and self tuning. Additionally, although I have a working Kalman IMU, accelerometers have the limitation of being affected by motor vibration, whereas the thermopiles are immune to vibration.
So, in the end, to keep in spirit of a low-cost full function autopilot, I am starting out offering the thermopile version. As I wrote above, my use of thermopiles is more sophisticated than FMA's, so people should not be fearful about how well it will control their plane. I do have a working Kalman IMU, but just not ready to a level that fits my vision of a plug-and-play autopilot. Building all of the fancy control routines for my usage of CoPilot thermopiles is a nice stepping stone to a Kalman IMU later.
Q: What was the biggest challenge in designing AttoPilot?
Besides learning embedded programming over the last 12 months, besides coming up with the trigonometry routines that work anywhere on the globe, the biggest challenge in came from learnings with the Beta testers: making the Rx-interface code object TRULY universal to all R/C Rx out there. I had to crack down on myslef and learn assembly code, which I had avoided up until 2 months ago. Now that I know assembly, I am not only HOOKED on it, but re-writing other code objects.
Q: What advice do you have for others that are interested in building autopilots or related gear?
These things are difficult, like Masters or PhD thesis level work, so don't kid yourself that it is easy. Have passion for it. If you are so determined to make something happen that the thought of it not working out makes you very unhappy, then you WILL find a way to get around ANY barrier, including lack of knowledge. Just because you don't know how to do something is the WORST reason for not doing it! Read "Think and Grow Rich" by Napolean Hill - Passion for something is the #1 ingredient to success.
Comments
and made a comment for it on the mailing-list. Maybe
they switched parts or something.
BTW, that sensor is "out of stock" since eons on the
FMADirect-site. Can you name any other source where
we can get some of them? (Preferably in europe but anything
will be fine)
I'll be buying one this summer.
Paul