Here's what it is:
A custom PCB with an embedded processor (ATMega168) combined with circuitry to switch between RC control and autopilot control (that's the multiplexer/failsafe, otherwise known as a "MUX"). This controls navigation (following GPS waypoints) and altitude by controlling the rudder and throttle. These components are all open source. This autopilot is fully programmable and can have any number of GPS waypoints (including altitude) and trigger camera or other sensors
As with the Basic Stamp autopilot, to make a fully autonomous aircraft you need to combine this navigation autopillot with a stabilization system, for which we turn to our old friend, the FMA Co-Pilot (off-the-shelf infrared sensors and control board to keep the plane flying level), which controls the ailerons and elevator.
By using Jordi's MUX, which allows us to switch from autopilot to manual RC control in hardware, we gain several advantages over the Basic Stamp:
1) Because the switching isn't handled by the processors, we don’t need to drive servos in real time, which means we don't need stand-alone servo driver chips (thus a simpler board)
2) We also don't need “mirroring” subroutines to pass through servo commands in RC mode (simpler code)
3) Don’t need power regulator, since we’re using regulated output from the RC receiver (simpler board)
4) The built-in MUX failsafe is cheaper and simpler than using a stand-alone one.
I've taken a quick pass at the schematic and PCB (Eagle 5.0 format) for ArduPilot, although this will evolve as we go through the hardware testing cycle: Schematic, PCB board. You can buy the board here. Arduino code coming soon in alpha now.
All together, this can be the basis of a sub-$500 UAV:
Autopilot:
--ArduPilot PCB: $10
--Boarduino kit + FTDI cable: $35 (subtract $17.50 if you already have a FTDI cable)
--PicoSwitch: $20 (we'll probably build this in the board in the next rev)[UPDATE: Jordi's now incorporated that into the board above. It's a TinyAVR chip ("IC3", $2.75) and its associated programming interface jumpers ("ISP")]
--EM-406 GPS module: $60
--Multiplexer chip : $1
--8 Samtec TSW-108-25-G-T-RA right angle servo connectors (available as a free sample): $0
(That's a $110 autopilot, thanks to the open source hardware. By comparison, the Basic Stamp version of this, with processor, development board and failsafe board, would run you $300, and it's not as powerful)
Stabilization:
--FMA Co-Pilot: $70
Plane and RC equipment:
--Hobbico SuperStar (includes motor, battery and ESC): $109
--6-Channel radio system (with proportional control for channel 6, to calibrate FMA system): $109
--Three servos: $45
TOTAL: $440
Comments
-c
I'm fortuante enough to work with an electronics guy who's doing the teaching. Personally I learn best by doing so I'd like to take on a project, even if I ended up using something else (like the stuff your working on now, which is GREAT NEWS). I was looking at the projects posted on the main page, would you suggest just going for a project like the Geocrawler 3 w/the basic stamp? Is the postings detailed enough for a true beginner to fumple through?
Any kind of timeline for the premade boards? I'd be willing to beta
No fear: we'll post full details and Arduino code in the next few weeks. Eventually we'll even sell the boards pre-made, components and all, although that's not really the spirit of the site and not a business we want to be in ourselves. But there are many like you, who'd rather not solder components on boards if they don't have to.
The SIRFIII seems to be the chipset of choice (and Sparkfun the supplier).
Only that it's a good and cheap SIRF III chip set that's worked very well for us in the past. Of course any GPS module would do....
Out of curiosity, is there any particular reason you chose that GPS module?