The PX4/Dronecode team and Drotek have been working on the next generation of Pixhawk autopilots, and you can now see a preview of that with the Pixhawk 3 Pro. It's based on the new PX4 FMU4 Pro standard, which includes a full suite of next-generation sensors and and the more powerful STM32F469 processor. It's designed for the Dronecode/PX4 flight software, which is the current official Pixhawk standard.
The board is currently in developer release, but will be taken out of beta after testing is complete in the next month or two.
All details are here (and below):
------------------
Introduction
FMUv4-PRO takes input from all of the Pixhawk stakeholders; end users, developers, researchers and manufacturing partners. Goals for this iteration of the platform are:
- – An integrated, single-board flight controller for space constrained applications
- – A modular multi-board flight controller for professional applications
- – Sufficient I/O for most applications without expansion.
- – Improved ease-of-use.
- – Improved sensor performance
- – Improved microcontroller resources (384 KB RAM, 2 MB flash).
- – Increased reliability and reduced integration complexity.
- – Reduced BoM and manufacturing costs.
Key design points
- – All-in-one design with integrated FMU and optional IO and lots of I/O ports.
- – Improved manufacturability, designed for simpler mounting and case design.
- – Separate power supplies for FMU and IO (see power architecture section).
- – Onboard battery backup for FMU and IO SRAM / RTC.
- – Integration with two standard power bricks.
Technology upgrades
- – Microcontroller upgrade to STM32F469; flash increases from 1MiB to 2MiB, RAM increases from 256KiB to 384KiB, more peripheral ports.
- – ICM-20608, MPU9K integrated gyro / accelerometer / magnetometers.
- – LIS3MDL compass (HMC5983 is now obsolete).
- – Sensors connected via two SPI buses (one high rate and one low-noise bus)
- – Two I2C buses
- – Two CAN buses
- – Voltage / battery readings from two power modules
- – FrSky Inverter
- – JST GH user-friendly connectors
I/O ports
- – 6-14 PWM servo outputs (8 from IO, 6 from FMU).
- – R/C inputs for CPPM, Spektrum / DSM and S.Bus.
- – Analog / PWM RSSI input.
- – S.Bus servo output.
- – 6 general purpose serial ports, 2 with full flow control, 1 with separate 1A current limit, 1 with FrSky protocol inverter.
- – Two I2C ports.
- – Two external SPI ports (unbuffered, for short cables only).
- – Two CANBus interfaces.
- – Analog inputs for voltage / current of two batteries
- – On-ground usage piezo buzzer driver.
- – Sensor upgrade connector scheme
- – High-power RGB LED.
- – Safety switch / LED.
Mechanical Form Factor
- – 71 x 49 x 23 mm (with case)
- – 45g (with case)
- – Standardized microUSB connector location
- – Standardized RGB led location
- – Standardized connector locations
System architecture
FMUv4-PRO continues the PX4FMU+PX4IO architecture from the previous generation, incorporating the two functional blocks in a single physical module.
PWM Outputs
Eight PWM outputs are connected to IO and can be controlled by IO directly via R/C input and onboard mixing even if FMU is not active (failsafe / manual mode). Multiple update rates can be supported on these outputs in three groups; one group of four and two groups of two. PWM signal rates up to 400Hz can be supported.
Six PWM outputs are connected to FMU and feature reduced update latency. These outputs cannot be controlled by IO in failsafe conditions. Multiple update rates can be supported on these outputs in two groups; one group of four and one group of two. PWM signal rates up to 400Hz can be supported.
All PWM outputs are ESD-protected, and they are designed to survive accidental mis-connection of servos without being damaged. The servo drivers are specified to drive a 50pF servo input load over 2m of 26AWG servo cable. PWM outputs can also be configured as individual GPIOs. Note that these are not high-power outputs – the PWM drivers are designed for driving servos and similar logic inputs only, not relays or LEDs.
Peripheral Ports
FMUv4-PRO recommends separate connectors for each of the peripheral ports (with a few exceptions). This avoids the issues many users reported connecting to the 15-pin multi-IO port on the original PX4FMU-PRO and allows single-purpose peripheral cables to be manufactured.
Five serial ports are provided. TELEM 1, 2 and 3 feature full flow control. TELEM4 can be switched into inverted mode by hardware and has no flow control. Serial ports are 3.3V CMOS logic level, 5V tolerant, buffered and ESDprotected.
The SPI ports are not buffered; they should only be used with short cable runs. Signals are 3.3V CMOS logic level, but 5V tolerant.
Two power modules (voltage and current for each module) can be sampled by the main processor.
The RSSI input supports either PWM or analog RSSI. CPPM, S.Bus and DSM/ Spektrum share now a single port and are auto-detected in software.
The CAN ports are standard CANBus; termination for one end of the bus is fixed onboard. .
Sensors
The new ICM-20608 has been positioned by Invensense as higher-end successor of the MPU-6000 series. The software also supports the MPU-9250, which allows a very cost-effective 9D solution.
Data-ready signals from all sensors (except the MS5611, which does not have one) are routed to separate interrupt and timer capture pins on FMU. This will permit precise time-stamping of sensor data.
The two external SPI buses and six associated chip select lines allow to add additional sensors and SPI-interfaced payload as needed.
IMU is isolated from vibrations.
Power Architecture
Key features of the FMUv4-PRO power architecture:
- – Single, independent 5V supply for the flight controller and peripherals.
- – Integration with two standard power bricks, including current and voltage sensing.
- – Low power consumption and heat dissipation.
- – Power distribution and monitoring for peripheral devices.
- – Protection against common wiring faults; under/over-voltage protection, overcurrent protection, thermal protection.
- – Brown-out resilience and detection.
- – Backup power for IO in the case of FMU power supply failure.
- – Split digital and analog power domains for FMU and sensors.
FMU and IO Power Supplies
Both FMU and IO operate at 3.3V, and each has its own private dual-channel regulator. In order to address issues seen with PX4v1 and noisy power supply connections, each regulator features a power-on reset output tied to the regulator’s internal power-up and drop-out sequencing.
The second channel of each dual regulator is switchable under software control. For FMU this is used to permit power-cycling the sensors (in case of sensor lockup), and for IO this will make it possible to perform the Spektrum binding sequence.
Power Sources
Power may be supplied to FMUv4-PRO via USB (no peripherals in this mode) or via the power brick ports. Each power source is protected against reverse-polarity connections and back-powering from other sources. Power spikes observed on the servo bus (up to 10V) led to the removal of the power-from-servo option, users wanting this feature can connect the servo rail with a cable containing a Zener diode to the 2nd power brick port.
The FMU + IO power budget is 250mA, including all LEDs and the Piezo buzzer. Peripheral power is limited to 2A total.
Power Brick Port
The brick port is the preferred power source for FMUv4-PRO, and brick power will be always be selected if it is available.
Servo Power
FMUv4-PRO supports both standard (5V) and high-voltage (up to 10V) servo power with some restrictions. IO will accept power from the servo connector up to 10V. This allows IO to fail-over to servo power in all cases if the main power supply is lost or interrupted. FMUv4-PRO and peripherals combined may draw up to 2A total.
Power is never supplied by FMUv4 to servos.
USB Power
Power from USB is supported for software update, testing and development purposes. USB power is supplied to the peripheral ports for testing purposes, however total current consumption must typically be limited to 500mA, including peripherals, to avoid overloading the host USB port.
Multiple Power Sources
When more than one power source is connected, power will be drawn from the highest-priority source with a valid input voltage.
In most cases, FMU should be powered via the power brick or a compatible offboard regulator via the brick port or servo power rail.
In desktop testing scenarios, taking power from USB avoids the need for a BEC or similar servo power source (though servos themselves will still need external power).
Summary
For each of the components listed, the input voltage ranges over which the device can be powered from each input is shown.
Brick ports | Servo rail | USB port | |
FMU | 4 – 5.7V | no | yes |
IO | 4 – 5.7V | 4 – 10V | yes |
Peripherals | 4 -5.7V, 2A max | 4 – 5.7V, 250mA max | yes, 500 mA max |
Peripheral Power :
FMUv4-PRO provides power routing, over/under voltage detection and protection, filtering, switching, current-limiting and transient suppression for peripherals.
Power outputs to peripherals feature ESD and EMI filtering, and the power supply protection scheme ensures that no more than 5.5V is presented to peripheral devices. Power is disconnected from the peripherals when the available supply voltage falls below 4V, or rises above approximately 5.7V.
Peripheral power is split into two groups:
- – TELEM 1 has a private 1A current limit, intended for powering a telemetry radio. This output is separately EMI filtered and draws directly from the USB / Brick inputs. Due to the noise induced by radios powering a radio from this port is not advised.
- – All other peripherals share a 1A current limit and a single power switch.
Each group is individually switched under software control.
The Spektrum / DSM R/C interface draws power from the same sources as IO, rather than from either of the groups above. This port is switched under software control so that Spektrum / DSM binding can be implemented. Spektrum receivers generally draw ~25mA, and this is factored into the IO power budget. S.Bus and CPPM receivers are supported on this rail as well.
Battery Backup :
Both the FMU and IO microcontrollers feature battery-backed realtime clocks and SRAM. The onboard backup battery has capacity sufficient for the intended use of the clock and SRAM, which is to provide storage to permit orderly recovery from unintended power loss or other causes of in-air restarts. The battery is recharged from the FMU 3.3V rail.
Voltage, Current and Fault Sensing :
The battery voltage and current reported by the power brick can be measured by FMU. In addition, the 5V unregulated supply rail can be measured (to detect brown-out conditions). IO can measure the servo power rail voltage.
Over-current conditions on the peripheral power ports can be detected by the FMU. Hardware lock-out prevents damage due to persistent short-circuits on these ports. The lock-out can be reset by FMU software.
The under/over voltage supervisor for FMU provides an output that is used to hold FMU in reset during brown-out events.
EMI Filtering and Transient Protection :
EMI filtering is provided at key points in the system using high-insertion-loss passthrough filters. These filters are paired with TVS diodes at the peripheral connectors to suppress power transients.
Reverse polarity protection is provided at each of the power inputs.
USB signals are filtered and terminated with a combined termination/TVS array.
Most digital peripheral signals (all PWM outputs, serial ports, I2C port) are driven using feature series blocking resistors to reduce the risk of damage due to transients or accidental mis-connections.
Comments
Ok, then buy the carrier board made by Hex. I fail to see the issue here. Your argument would be similar to somebody saying something like "The Solo was intended initially for 3DR as a manufacturer of drones for carrying a GoPro camera for consumer applications. It was not meant for carrying a Sony QX1 for commercial operations."
And, as to what 3DR intended, I'll tell you what they intended:
This photo does two things. It shows one intended usage of the Cube by 3DR. And it shows how small a PH2 installation can be.
Quite a different bounding box isn't it?
I got this setup for evaluation from 3DR... about 2 years ago maybe? It's pretty good. Much better than the Pixfalcon which ultimately replaced it. So small, and still benefits from internal vibration isolation.
This was originally installed on a 250 racer. After I was given a Pixfalcon for evaluation, I moved the PH2 over to this quad. The Pixfalcon in the 250 FAILED after a few flights, I should mention. One IMU chip is inoperative.
So to get the 5 vision sensors & 4k video with in-camera stabilization of a DJI Phantom, merely connect a DJI Phantom via the SPI bus to the Pixhawk.
@Rob_Lefebvre, I absolutely LOVE the pixfalcon - it's made by Holybro, which has a great reputation and I use it on almost all my professional and sport aircraft and I've never had any problem whatsoever. It's takes up so little space - I even uncase it to make it fit on the 32x32mm stack with GPS, telemetry & power module. It's extremely rare that I need the additional ports that the pixhawk offers.
For me, minimal size is very important - it makes for quick, clean, compact builds yet easy to maintain.
Re. PH3, looks good, but pity it lost the power from rail feature - my clients and I have had 2 cases where my power module failed, sending 42 volts to the px4 in flight..Since then I never use the power from the PM.
@Stmpngrnd, interesting find. However it remains very difficult for many to use such tiny 80 pins connectors. Do you imagine soldering individual pins on that, even as an experienced DIYer ? And if you have to etch your own PCB each time you need an autopilot, we'd be in real trouble.
Most want something that works (most important), is simple and plug & play.
That shows the Cube design choice was intended initially for 3DR as a manufacturer of drones with factory plants able to integrate it. Not meant for DIY, not meant for standalone use.
What people forget about when talking form fact is that the Cube allows for any design of a carrier board and not the one that it is currently packaged with. These connectors are available from Hex in single quantities. For the accomplished DIYers you can make any wiring layout you want for your project. The pinouts are on the wikki and you can get your pcb made for a few bucks at places like Oshpark. This allows clean and tailored interrogations for anyone wanting to put in the effort.
@Rob_Lefebvre - GPLv2 and v3 are different in some important ways. The Linux kernel is explicitly licensed GPLv2 and doesn't include the extension to v3 and future versions like other projects have.
As a software developer I don't like this, but the unfortunate reality is many companies won't touch GPLv3 software. If you look at software license statistics over the past decade or so you'll see an explosive growth of permissive licenses (MIT, Apache, BSD) relative to GPL.
As for the Pixhawk 3, I'm personally looking forward to 50% more RAM, additional serial ports, and the separate telem 1 current limit. I also prefer the form factor with connectors on the ends.
I'd be interested in comparisons of IMU heaters and polynomial thermal compensation. I'm wondering why IMU heaters haven't been more common in this space. Does the heater push the sensor near the top end of its spec? Does it impact longevity?
Hi Chris, I thought - think more restrictive was appropriate.
In the sense I was using it it was more restrictive in terms of restricting freedom of continued open use as opposed to restricting modifiers from grabbing it for their own exclusive use.
I apologize if this was ambiguous.
As soon as you take an open source program and add something to it and then make it not open source that sounds more restrictive to me.
The concept from the start was open source and to maintain open source and as soon as you deviate from that - well you really aren't open source any more are you.
In the one case it is simply an acquisition of some ones current open source code which with very small modification can be made into a personal cash cow, simply by "taking" all the free effort that was put into it and making it your own.
In the other case, the entire community moves forward and benefits together.
I realize that the American concept of grab it all for me Capitalism has a lot of trouble with that obviously Commie inspired approach.
But we live in a world where very rapidly it is becoming clear that simple competition as in a Football game is not likely to promote survival of the species (humans).
Greed needs controls and the general public needs to benefit from our technology more than a very tiny batch of oligarchs.
That was what real open source is about as opposed to sort of open source.
Our current political condition is exactly representative of what is wrong.
As far as the ultimate overreach of the Solo I agree with Rob above that if a genuine effort had been put into adapting Ardupilot maybe hiring a few extra real hardware and software engineers the whole thing wouldn't have drug on so long that you virtually shot yourselves in your own foot.
I have 2 Solos and think they are really cool, but clearly my next quad will be a DJI Spark.
Best Regards,
Gary
@John, I'm not taking sides and Drotek is indeed also responsible of the reactions here.
@Huges, you seem to have a bad case of selective memory. The whole 'out of topic vomit' deal was started in this thread by Drotek, suddenly attacking 'the cube' with non factual statements. Up until that point, the 'fanatics' where all playing nice and being civil. I suggest you read the entire thread from the start again, and look for the post where the mood start to turn.