All Posts (13949)

Sort by

New! Drones for Good Picture Book Series for Kids!

9575611473?profile=RESIZE_710x

Hi there! We've just launched our new and inclusive Picture Book Series on Drones for Good!

The series focuses on local expertise and drones for good. The books are written by and with local drone experts, editors and illustrators from Africa, Asia and Latin America. The first book in the series focuses on mangrove protection in Panama. This project is a partnership between Flying Labs and WeRobotics. Each book in the series is based on a real-world drones-for-good project led by Flying Labs and their local partners. We'd be so grateful for your kind help in spreading the word. Feel free to retweet us!

Check out the trailer for our first book on The Magic of Mangroves and get your copy from our Kickstarter page!

 

 

Read more…

The COVID-19 pandemic revealed several operational challenges in performing manual drone flights for numerous use cases such as inspections and progress monitoring. Consequently, employing automation technology has become more of a necessity than a nice-to-have. However, the monolithic nature and prohibitive cost of incumbent drone-in-a-box (DiaB) systems for autonomous UAV operations have lowered the adoption of such solutions. Hence, several companies are working towards modularizing the DiaB stack to reduce cost and increase adoption.

These companies are building automated docking stations that support charging, cooling, and landing for popular, off-the-shelf drones such as the DJI Mavic, Matrice, and Phantom series.

Such systems can enable users to easily deploy fully automated drones (of their choice) for a wide range of applications, such as automated aerial security, asset monitoring, and public safety, at a fraction of the cost of current DiaB systems.

In this article, we highlight the salient features of some of the best turnkey DJI-compatible docking stations in the market that you can leverage based on your geography, business model, and use case. Apart from common features such as cloud connectivity, remote control & telemetry, auto-charging, and interactive GUI, each dock brings a unique set of capabilities to the market, which we have attempted to highlight. It is worth noting that most of these drone nests can be further customized on request or by installing addons.

Hextronics Global Advanced (USA)


The Hextronics Global Advanced supports a rugged, waterproof design that is ideal for a wide range of indoor/outdoor environments and can operate in a temperature range of -20 to +50 °C (-4 to +122 °F). Although the most recent model weighs up to 45 kg (~100 lbs), a clear differentiator of this docking station is its IP66-level enclosure and highly efficient in-house charging feature, where a robotic gantry autonomous performs battery swapping for the drone. Further, the base unit can hold up to 6 additional batteries and keeps them fully charged while the drone is away on routine missions. And despite its small and lightweight design, The Global Advanced does not compromise on any key feature, offering a groundbreaking downtime of just 1.5 min. It is compatible with the DJI Mavic 2 series of drones and its landing pad is installed with LED lights to enable night landing.

IDIPLOYER MP2.1 (UK)


Coming in at only ~30 kg (~66 lbs), the super-light IDIPLOYER MP2.1 is built with a rigid aluminium frame and contains no moving parts such as centering bars or robotic arms for landing or charging the drone. Engineered with insulations that conform to IP65 standards, the station is installed with thermostatic heating and peltic cooling systems for extreme temperature regulation. A contact-charging-based docking station centered around a simple and durable design, the MP2.1 is the ideal choice for large-scale deployments of DJI Mavic 2 fleets. The chassis is fitted with long-range antennas and LED lights for better connectivity and real-time visual alerts, respectively. The station can be secured to any surface such as rooftops or vehicles and contains electromagnetic locks to prevent theft. Furthermore, the rear access panel comes with cam locks, although users have the freedom to add security/locking systems of their choice, including a custom installation of external CCTV cameras.

Heisha D80 (PRoC)


Heisha Tech offers enhanced security and durability with its sturdy designs. Their models are heat-resistant, corrosion-proof, and rainproof monsters with an International Protection (IP) rating greater than 54. Owing to its high reliability and cost-efficiency, Heisha’s docks feature a contact-based charging system; other useful add-ons such as solar panels, weather stations with digital sensors, surveillance cameras, extended range antennas, and loudspeakers are also provided with the dock bundle.

The D80 Drone Dock is highly customizable owing to its modular design: the unit consists of 3 main modules, viz. control, charging, and cooling, and an all-aluminum alloy canopy that has been tested for rigidity. So if you’re a custom drone developer and your hangars have docking and battery-swapping capabilities, you only need a control unit, which is a component that Heisha provides separately. What’s more: the D80 redefines drone agnosticism in the DiaB space, as it is compatible with almost every commercial drone available today, including the DJI Mavic 2 and Mavic Mini series, Phantom 4 RTK, Autel EVO II, Yuneec Typhoon, and Parrot ANAFI. It weighs a decent 45 kg and can withstand temperatures between -20 and +50 °C (-4 and +122 °F). To learn more about the D80 and other drone charging pads designed by Heisha, visit https://www.heishatech.com/d80-drone-charging-dock/

Skycharge Skyport DP5 (Germany)


The Skyport drone hangar is built exclusively for the outdoors, featuring a solid stainless-steel body and anti-crushing design to tolerate physical extremities. It is a heavy-duty dock that primarily supports the DJI Mavic 2 series and Parrot ANAFI drones but can charge any commercial drone with an 11-50V battery using its proprietary conductive-charging pad, the Bolognini S1. The Bolognini S1 is a fast and lossless contact-charging platform that does not require major drone modifications. With an IP65 and CE-certified system, the Skyport DP5 is a reliable and heavy-duty docking station. It offers a 500W zero-loss contact-charging platform with no mechanical moving parts - reducing the required frequency of maintenance and servicing. It also houses an HVAC system to regulate internal temperatures and an electromechanical anti-theft system. To learn more about Skycharge Skyport DP5, visit https://skycharge.de/skyport-drone-hangar

FoxIT Response (South Africa)


The FoxIT Response is a hefty, weatherproof docking station engineered for harsh climates. With its heating, ventilation, and conditioning (HVAC) unit and anti-theft system, it proves to be one of the most environmentally versatile DiaB solutions. It supports the DJI Mavic series and can house any custom drone with similar dimensions. To support a variety of drone models, it offers a retrofit conductive-charging system with a water-resistant pogo pad and bars for drone centering. This charging technology does not necessitate complex drone modifications; a typical charge cycle lasts for about 45 minutes. The Response allows for advanced security with encryption and Airband radio connectivity for remote locations. Opting for additional security enhancements can better its object-detection capabilities to prevent loss and theft. To learn more about Foxit Drone in a Box system, visit https://foxit.co.za/

HIVE Droneport (Russia)


Partners with Volatus Aerospace and Airscope, Droneport LLC is one of the only companies that offers a DJI M300-compatible drone dock with a battery-swapping feature. With a low downtime of just 3 min and a transmission range of over 100 km², the HIVE is a highly robust and reliable docking station suitable for a wide variety of round-the-clock applications. Its battery-swapping module features DJI’s original charging station and can hold 6 and charge 2 batteries simultaneously. This tried and tested hangar houses dedicated security and climate control modules and is certified for distribution in North America. It offers high interoperability with a variety of payloads, add-ons, and software (for image-processing, AI-based analytics, etc.). Visit https://hive.aero/en to learn more.

Airscort ST-1200 (Israel)


This customizable and cost-effective drone docking solution is compatible with the DJI Mavic 2 series. Additionally, it can house custom drones based on the Pixhawk build. The base unit weighs 40 kg and can provide both contact-charging and battery-swapping technologies (based on user requirement), with the latter boasting a downtime of under 4 min. An optional installation of StoreDot batteries is also provided with the kit. The ST-1200 is able to regulate internal temperatures through its insulations and wide array of sensors that can trigger a cooling/heating action based on ambient weather conditions. It also comes with elevated capabilities (optional) for larger, military-grade drones. To learn more about Airscrot drone docking station, visit https://www.airscort.me/

Aerobox (Israel)


The Aerobox drone dock is most suitable for small and lightweight drones and can be used for several security and inspection applications. With an inbuilt smart power generator, the Aerobox is highly energy-efficient and easy to set up. It is also resistant to dust, light, and rain; as a result, it can function in numerous environments, within a temperature range of -25 to +60 °C (-13 to +140 °F). Compatible with DJI Phantom, Mavic 2, Mavic Mini, and Mavic Air drones, this rugged docking station supports a contact-charging platform and smart air-cooling system for increased temperature control. It also contains a wide variety of sensors to relay critical information to the user. Further, several other communication options apart from 4G/5G are available as add-ons.

Software Integration for Drone Charging Stations


Docking stations with self-charging and internal climate-control systems help drone service providers with efficient fleet management and increased accessibility in a wide variety of environments. These state-of-the-art machines form the strong foundation for complete drone automation. Following are a few key features of the dock-integration software offered by the FlytBase team for a fully automated workflow between each of the docking stations featured above and the drone.

Cloud Connectivity


With autonomous docking stations connected to the cloud over 4G/5G/LTE networks using the FlytNow Edge kit, users can rest assured that sending and receiving data would be seamless across the globe. This implies that both the users and the stations are constantly “in the know” of your drones’ flights and landings, and can keep track of their missions, telemetry data, and battery levels at all times. They will also be able to pre-plan failsafe actions that are automatically triggered during emergencies or incidents.

Precision Landing


Almost no modern software solution today is complete without leveraging the advanced computer vision and AI modules. FlytNow leverages this powerful technology to land drones onto a docking station with centimetre-level accuracy. The module can be trained to land on both moving and stationary surfaces as it is built with highly accurate algorithms.

Mission Planner & Scheduler


With this feature, you’ll be able to plan and schedule complex repeatable missions for your drones with a few clicks. These waypoint-based missions execute automatically at the set date and time after sending toaster messages a few minutes before take-off.

Payload & Third-Party Software Integration


For payloads such as loudspeakers, thermal cameras, or spotlights, FlytNow offers a plethora of remote on-screen controls and visualization tools. Upon request, users can also integrate their own custom payloads with the software. Additionally, you can also connect various third-party software such as VMS, UTM, and ERP applications as per your requirements.

To learn more about how FlytNow can help you automate your drone operations or how you can get started with any of the above docking stations, contact us

Read more…

9476986681?profile=RESIZE_710x

We are building an open protocol smart charger for lithium batteries. BatCha can charge BATMON enabled batteries without have to set the parameters for each battery. BatCha is WiFi enabled and monitors the charge against over-temperature, over-voltage etc. Charging using BatCha is extremely simple and dumb proof.

9476988879?profile=RESIZE_710x

 

BATMON is a lightweight BMS for drone batteries. 9476989069?profile=RESIZE_710x

We launched a Kickstarter Campaign to build the charger https://www.kickstarter.com/projects/batmon/batcha-and-batmon-smart-charger-and-battery. Please donate and support our campaign.

 

Read more…
3D Robotics

From Hackaday. You can 3D-print this quad or buy the parts. It uses modified Betaflight firmware:

Quadcopters are great for maneuverability and slow, stable flight, but it comes at the cost of efficiency. [Peter Ryseck]’s Mini QBIT quadrotor biplane brings in some of the efficiency of fixed-wing flight, without all the complexity usually associated with VTOL aircraft.

The Mini QBIT is just a 3″ mini quadcopter with a pair of wings mounted below the motors, turning it into a “tailsitter” VTOL aircraft. The wings and nosecone attach to the 3D printed frame using magnets, which allows them to pop off in a crash. There is no need for control surfaces on the wings since all the required control is done by the motors. The QBIT is based on a research project [Peter] was involved in at the University of Maryland. The 2017 paper states that the test aircraft used 68% less power in forward flight than hovering.

Getting the flight controller to do smooth transitions from hover to forward flight can be quite tricky, but the QBIT does this using a normal quadcopter flight controller running Betaflight. The quadcopter hovers in self-leveling mode (angle mode) and switches to acro mode for forward flight. However, as the drone pitches over for forward flight, the roll axis becomes the yaw axis and the yaw axis becomes the reversed roll axis. To compensate for this, the controller set up to swap these two channels at the flip of a switch. For FPV flying, the QBIT uses two cameras for the two different modes, each with its own on-screen display (OSD). The flight controller is configured to use the same mode switch to change the camera feed and OSD.

[Peter] is selling the parts and STL files for V2 on his website, but you can download the V1 files for free. However, the control setup is really the defining feature of this project, and can be implemented by anyone on their own builds.

Read more…

[note that this was done in a "capture room", which had external cameras that gave the drone precise position information. So it isn't quite the same thing as doing it in the real world.]

From RoboHub:

The best human drone pilots are very good at doing this and have so far always outperformed autonomous systems in drone racing. Now, a research group at the University of Zurich (UZH) has created an algorithm that can find the quickest trajectory to guide a quadrotor – a drone with four propellers – through a series of waypoints on a circuit. “Our drone beat the fastest lap of two world-class human pilots on an experimental race track”, says Davide Scaramuzza, who heads the Robotics and Perception Group at UZH and the Rescue Robotics Grand Challenge of the NCCR Robotics, which funded the research.

“The novelty of the algorithm is that it is the first to generate time-optimal trajectories that fully consider the drones’ limitations”, says Scaramuzza. Previous works relied on simplifications of either the quadrotor system or the description of the flight path, and thus they were sub-optimal. “The key idea is, rather than assigning sections of the flight path to specific waypoints, that our algorithm just tells the drone to pass through all waypoints, but not how or when to do that”, adds Philipp Foehn, PhD student and first author of the paper in Science Robotics.

External cameras provide position information in real-time

The researchers had the algorithm and two human pilots fly the same quadrotor through a race circuit. They employed external cameras to precisely capture the motion of the drones and – in the case of the autonomous drone – to give real-time information to the algorithm on where the drone was at any moment. To ensure a fair comparison, the human pilots were given the opportunity to train on the circuit before the race. But the algorithm won: all its laps were faster than the human ones, and the performance was more consistent. This is not surprising, because once the algorithm has found the best trajectory it can reproduce it faithfully many times, unlike human pilots.

Before commercial applications, the algorithm will need to become less computationally demanding, as it now takes up to an hour for the computer to calculate the time-optimal trajectory for the drone. Also, at the moment, the drone relies on external cameras to compute where it was at any moment. In future work, the scientists want to use onboard cameras. But the demonstration that an autonomous drone can in principle fly faster than human pilots is promising. “This algorithm can have huge applications in package delivery with drones, inspection, search and rescue, and more”, says Scaramuzza.

Read more…

Drones for Environmental Protection: Oceans Unmanned and The Ocean Cleanup Join Forces.

9293308874?profile=RESIZE_710x

By: Miriam McNabbon.

In another amazing implementation of drones for environmental protection, Oceans Unmanned and The Ocean Cleanup have joined forces to fight marine debris.

Oceans Unmanned, Inc. is a non-profit dedicated to the use of drones for environmental protection:  The Ocean Cleanup, a non-profit founded in 2013 to deal with the problem of plastic and debris in the ocean.  Now, the two will work together, using drones to evaluate and improve ongoing efforts to capture and remove marine debris in the Great Pacific Garbage Patch. “Later this summer, a team of Oceans Unmanned operators equipped with several UAS will deploy offshore with The Ocean Cleanup researchers for a six-week campaign to conduct daily aerial surveys in an attempt to quantify the distribution and abundance of marine debris in the target area,” says an Oceans Unmanned press release.

 

"It is estimated that over five trillion pieces of plastic currently litter the ocean and accumulate in five ocean garbage patches, with the largest one being the Great Pacific Garbage Patch located halfway between California and Hawaii. Founded in 2013 to address this issue, The Ocean Cleanup is developing technologies to capture and retain at-sea marine debris to bring it back to shore for recycling. In July, the organization will head back out to the Great Pacific Garbage Patch to deploy the third iteration of their ocean cleanup design. The first system was deployed in 2018, and the second, improved version in 2019. “We successfully performed a feasibility assessment on UAS-based remote sensing for the quantification and detection of floating plastic in 2018,” stated Robin de Vries, The Ocean Cleanup Geospatial Analyst. “When we decided to ramp up this area of our work, we turned to Oceans Unmanned because of their years of proven maritime UAS expertise."

"We’re very excited about this partnership,” said Matt Pickett, Director of Oceans Unmanned. “We’ve been following the great work of The Ocean Cleanup for several years, and we’re looking forward to supporting their efforts. We’re big believers in the power of technology to address longstanding environmental challenges and marine debris is an area where we think we can make a big impact. The waterproof Aeromapper Talon Amphibious UAS will be launched from the ship, survey for approximately two hours, then perform a water landing and be recovered by a small boat.  Imagery captured by the UAS will be analyzed through an automated neural network for object detection which can direct on-site collection efforts and evaluate recovery system efficiency."

We will be operating over 1000 miles offshore, and a UAS is the perfect tool to help analyze this global problem,” CAPT Brian Taggart, NOAA (ret), Director, Oceans Unmanned, tells DRONELIFE. “We hope to make an impact!

9293311054?profile=RESIZE_710x

About the Aeromapper Talon Amphibious

The Amphibious version of the Aeromapper Talon allows maritime operations by autonomously belly landing on water. It’s the perfect solution for aerial observation, data collection and mapping thanks to its dual camera set up and video link range up to 20kms.
The Aeromapper Talon Amphibious is a Transport Canada Compliant drone and is manufactured by Aeromao Inc, the leading Canadian UAS fixed wing manufacturer and drone solution provider.

How does it work? The Aeromapper Talon Amphibious is fully waterproof, and its simply unsinkable. Its extreme buoyancy keeps the flotation line low, all its access doors and ports are cleverly designed to keep water out.

More information here

Read more…

From Hackaday:

Electric RC aircraft are not known for long flight times, with multirotors usually doing 20-45 minutes, while most fixed wings will struggle to get past two hours. [Matthew Heiskell] blew these numbers out of the water with a 10 hour 45 minute flight with an RC plane on battery power. Condensed video after the break.

2021-06-23-10.png?w=400https://hackaday.com/wp-content/uploads/2021/06/2021-06-23-10.png?resize=250,159 250w, https://hackaday.com/wp-content/uploads/2021/06/2021-06-23-10.png?resize=400,254 400w, https://hackaday.com/wp-content/uploads/2021/06/2021-06-23-10.png?resize=800,508 800w" alt="" width="400" height="254" data-attachment-id="483967" data-permalink="https://hackaday.com/2021/06/27/electric-rc-plane-flies-for-almost-11-hours/2021-06-23-10/" data-orig-file="https://hackaday.com/wp-content/uploads/2021/06/2021-06-23-10.png" data-orig-size="1072,681" data-comments-opened="1" data-image-meta="{"aperture":"0","credit":"","camera":"","caption":"","created_timestamp":"0","copyright":"","focal_length":"0","iso":"0","shutter_speed":"0","title":"","orientation":"0"}" data-image-title="2021-06-23 (10)" data-image-description="" data-medium-file="https://hackaday.com/wp-content/uploads/2021/06/2021-06-23-10.png?w=400" data-large-file="https://hackaday.com/wp-content/uploads/2021/06/2021-06-23-10.png?w=800" /> Flight stats right before touchdown. Flight time in minutes on the left, and miles travelled second from the top on the right.

The secret? An efficient aircraft, a well tuned autopilot and a massive battery. [Matthew] built a custom 4S 50 Ah li-ion battery pack from LG 21700 cells, with a weight of 2.85 kg (6.3 lbs). The airframe is a Phoenix 2400 motor glider, with a 2.4 m wingspan, powered by a 600 Kv brushless motor turning a 12 x 12 propeller. The 30 A ESC’s low voltage cutoff was disabled to ensure every bit of juice from the battery was available.

To improve efficiency and eliminate the need to maintain manual control for the marathon flight, a GPS and Matek 405 Wing flight controller running ArduPilot was added. ArduPilot is far from plug and play, so [Matthew] would have had to spend a lot of timing tuning and testing parameters for maximum flight efficiency. We are really curious to see if it’s possible to push the flight time even further by improving aerodynamics around the protruding battery, adding a pitot tube sensor to hold the perfect airspeed speed on the lift-drag curve, and possibly making use of thermals with ArduPilot’s new soaring feature.

A few of you are probably thinking, “Solar panels!”, and so did Matthew. He has another set of wings covered in them that he used to do a seven-hour flight. While it should theoretically increase flight time, he found that there were a number of significant disadvantages. Besides the added weight, electrical complexity and weather dependence, the solar cells are difficult to integrate into the wings without reducing aerodynamic efficiency. Taking into account what we’ve already seen of [rcflightest]’s various experiments/struggles with solar planes, we are starting to wonder if it’s really worth the trouble.

Read more…

More and more government drone pilot and technician jobs are being advertised. If you are a school or training institution, you may wish to commission a build by people who are already supplying government drones. But what about the costs you say? Like many things, it depends on what you want, who you know and how charming you are. If you are a pilot, mechanic, school, startup or government agency on a tight budget, you can still look sleek and dominate at a fraction of the usual cost.

Airframes somewhat similar to these can be commissioned surprisingly cheaply. They look the part on the ground and in the air. There is ample space for telematics and avionics. If you are a designer and manufacturer of these electronic devices, having a test platform that looks the part can make all the difference when it comes to closing sales.

o, who can help with this and more? Tommy! Tommy owns TMMY Scale Composites in Lamphung, Thailand. Lamphung is a short drive or train ride from serene and picturesque Chiang Mai. Tommy’s first question will be which airfoil do you want? 

Should you want to train or train others on a platform that looks big bureaucracy without breaking the bank, contact Tommy at: Tmmy Scale Composite

266 Mu1 T.Muang NGA A.muang
Lamphun Thailand 51000
Tel. +6681 344-1534
Email: tmmyscalecompt@gmail.com

Website: https://tmmy.pantown.com/

Read more…

DS600

DS600 is made from reinforced carbon fiber. “H”design makes it stronger and durable. It equips with T-motor

505-S propulsion system to improve the efficiency and endurance. The foldable propeller and landing gear make

the drone easy to carry. DS600 is perfect for long range inspection, surveillance and mapping.

 

  • Wheelbase: 600MM
  • Dimension: 600mmX600mmX 300mm
  • RTF weight(no battery): 2.5KG
  • Max payload : 2KG
  • Max take-off weight : 6KG
  • Working altitude : 1-500m
  • Flying speed : 1-15m/s
  • Endurance: 40-60min

9032360300?profile=RESIZE_710x

 

9032362088?profile=RESIZE_710x

9032361494?profile=RESIZE_710x

 

 

Read more…

ArduRover Skid Steering

Hi, I'm building ArduRover with Skid Steering, The platform are base of DFROBOT Pirate 4WD and using 2 DC Motor L298N

8997855656?profile=RESIZE_710x

 

I'm using the firmare for Pixhawk 1 (fmuv3)

4.0.0-FIRMWARE_VERSION_TYPE_OFFICIAL

and according the ardupilot docs for Rover
My config for CH1 and CH 3 are

For “Skid steering” vehicles (like R2D2) these parameters values will need to be set:

Actualy its depend on your wiring setup at L298N for direction

8997883685?profile=RESIZE_710x

Here is the schematic of how I wiring it.

8997885267?profile=RESIZE_710x

The ENA and ENB jumper was remove.

For skid-steering vehicles like the Pirate 4WD from DFROBOT
Set MOT_PWM_TYPE = 3

8997896266?profile=RESIZE_710x

In my transmitter when throttle is zero the the ch1 push left a quarter, it will rotate the rover to left (left wheel stop - right wheel move) and also the opposite. But if push full it will move fast forward.

If the ch 3 push half more (55%) it will move forward slowly. I'm still setup some parameters for smooth moving.

 

Read more…
100KM

An In-depth Comparison Of Mapping Drones

When acquiring a mapping or surveying drone, the choice is quickly narrowed to a fixed-wing airplane combined with Vertical Takeoff and Landing (VTOL) for its vastly greater range, versatility and ease of use. Within this segment, there are several commercial-grade solutions of European origin. But comparing their capabilities and limitations can be difficult.

The following comparison was made to provide a detailed insight into the characteristics of the leading suppliers in this field. The data has been verified across multiple sources. Several aspects have been calculated to provide a consistent representation of the data. The calculation methods and sources are provided at the bottom of this article.

The platforms chosen for this comparison are:

  • The DeltaQuad Pro #MAP by Vertical Technologies
  • The WingtraOne by Wingtra
  • The Trinity F90+ by Quantum Systems
  • The Marlyn by AtmosUAV
  • The eBee X by SenseFly 

In this article, you will find an abstract of the comparison.
Click here to read the full comparison

 

Key Features

A quick rundown of the most critical aspects that are relevant to mapping.

  • Max flight time is calculated at sea level with camera payload.
  • The coverage is calculated by multiplying the maximum flight distance by the maximum camera resolution. It is based on 3CM per pixel with an overlap of 50%.
  • To compare pricing a package was selected for each model that most closely resembles: 42MP camera, <1CM PPK, 2 Batteries, Standard radio, GCS (if available).

 

I7Pk5njH6FJe4FpJV5Wuti2qnmYXz4erpMIu3LeuuVZvA_4clCTqZvprnFWYT-eFT9vKo0dLPlJaL27JrgAIpnwGnHTk72tHOcB_38huIC9FYRf09Gx0RqHZ5u-ztQ4QsHwQGXEX

Maximum surveying area in Hectares

The maximum area that can be mapped in a single flight is determined by several factors such as camera resolution, cruise speed, endurance, and lens options.
This comparison is based on the highest resolution offered for each platform, combined with the maximum flight distance. The values have been calculated based on 3cm per pixel resolution and a 50% image overlap. The values have then been compensated to account for the camera’s minimum trigger interval.
 

Maximum telemetry range

The maximum range at which the UAV can be controlled. Long-range communications is important for corridor-type surveys such as power lines, pipelines, railways, and roads.

The indicated ranges are the maximum radio range as specified by the supplier. Nominal ranges can be lower.

 

Maximum image resolution

The maximum image resolution in Megapixels is the total number of pixels that make up a single image. This can be an important factor for a fixed-wing/VTOL UAV.

A higher resolution allows:

  • Covering larger areas
  • Flying at higher altitudes
  • Producing higher resolution end results
  • Better post-processing performance with more accuracy
 

Maximum flight time

The maximum flight time for fixed-wing UAV depends on the altitude above sea level. As the altitude increases, the UAVs need to fly faster due to a lower air density. However, the lower air density also provides less drag, therefore in most cases, the maximum flight distance remains the same at all altitudes.

 

The indicated maximum flight times are at sea level while carrying a regular camera payload.

 

Read the full comparison

The full comparison contains detailed technical specifications, pricing details, sources, and methods of calculation.
Click here to read the full comparison

Read more…