All Posts (14029)

Sort by

Application of TF-Luna in Pixhawk

TF-Luna can directly be connected with the serial port of Pixhawk. TF-Luna can be used in flight device

for the purpose of altitude holding or obstacle avoidance. This document is suitable to Pixhawk adopts ArduCopter V4.0.0 or higher firmware.

Example for connecting Pixhawk:

 12214371691?profile=RESIZE_584x

Figure 1 Schematic Diagram of Connecting TF-Luna with TELEM 2 Interface (Serial Port 2) of Pixhawk

a)MissionPlanner configuration description of TF-Luna for the purpose of altitude hold

 

Connect the flight control board to MP.Attention:the installation height should be bigger than non-detection zone.Select [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

SERIAL2_PROTOCOL = 9    [Rangefinder option]

 

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

 

RNGFND_MIN_CM = 20    [It could be changed according to real demands and should be bigger LiDAR than non-detection zone,unit is cm]

RNGFND_MAX_CM = 200      [It could be changed according to real demands but should be smaller than

effective measure range of LiDAR,unit is cm]

 

RNGFND_GNDCLEAR = 15    [expressed in cm, depending upon mounting height of the module and

should be bigger LiDAR than non-detection zone]

 

RNGFND_ORIENT=25    [face down]

 

PRX_TYPE=0

 

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

 

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the altitude value from LiDAR sensor: double click the area of the Mission Planner, see the following picture:

12214373260?profile=RESIZE_400x

Select option sonarrange,see following picture:

 12214371897?profile=RESIZE_584x

 

The altitude distance from the LiDAR will be displayed in Sonar Range(meters),see the following picture:

b)  MissionPlannerconfiguration description of TF-Luna for the purpose of Obstacle Avoidance

12214373277?profile=RESIZE_400x

It’s only recommended to be used in Loiter mode, the detail setting is as followings:

 

Connect the flight control board to MP. Attention:distance between UAV margin and LiDAR should be bigger than LiDAR non-detection zone.  Select  [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

AVOID_MARGIN=3 [Unit: m, set obstacle avoidance distance as required]

SERIAL2_PROTOCOL = 9    [Rangefinder option]

 

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

 

RNGFND_MIN_CM = 20      [It could be changed according to real demands and should be bigger LiDAR

than non-detection zone,unit is cm]

 

RNGFND_MAX_CM = 200    [It could be changed according to real demands but should be smaller than effective measure range of LiDAR,unit is cm]

RNGFND_GNDCLEAR = 15    [Unit: cm, depending upon mounting height of the module and should be bigger LiDAR than non-detection zone]

RNGFND_ORIENT=0      [It depends on the LiDAR’s real installation direction,0~7 is supported up to

now,see detail in MP]

 

PRX_TYPE=4        [RangeFinder should be selected for proximity sensor in obstacle avoidance mode]

 

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

 

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the target distance from the LiDAR:(distance from LiDAR in obstacle avoidance can’t be displayed in sonarrange option )press Ctrl+F button in keyboard,the following window will pop out:

 12214372872?profile=RESIZE_710x

Click button Proximity,the following window will appear: 

 

The number in green color means the distance from LiDAR in obstcle avoidance mode  (the number only refresh when this window open,close,zoom in or zoom out,it doesn’t mean the real time distance from LiDAR and will not be influenced in Mission Planner version under v1.3.48,the problem could be solved by updating Mission Planner)

 

    Attach:If TELEM 2 port has been used ,SERIAL4/5 interface could be used,the other setting are same

 

Figure 2 Schematic Diagram of Connecting TF-Luna with SERIAL4/5 Interface (Serial Port 4/5) of Pixhawk

Configuration Descriptions of Mission Planner

 

Connect  flight  control  board  to  MP,  Select  [Full  Parameter  List]  in  the  left  from  the  below  bar [CONFIG/TUNING] . Find and modify following parameters:

SERIAL4_PROTOCOL = 9 (LiDAR)

SERIAL4_BAUD = 115

 

Upon setting of these parameters, the other parameters should be same as Mission Planner configuration description of TF-Luna for the purpose of Obstacle Avoidance or Altitude Holding,then click [Write Params] on the right of the software to finish.

Read more…

In the modern drone ecosystem, BVLOS (Beyond Visual Line of Sight) operations represent the next frontier of possibilities. These operations allow drones to travel distances beyond the operator's direct vision, unlocking potential in industries like agriculture, logistics, surveillance, and more. However, automating BVLOS operations requires not just advanced drones but also sophisticated management platforms. This is where FlytBase and DJI's FlightHub 2 come into play, especially with their compatibility with the DJI dock.

The DJI dock integration is a game-changer, enabling automated drone charging, data transfer, and mission planning. With both FlytBase and FlightHub 2 offering compatibility with this dock, enterprises are presented with a pivotal decision: Which platform will best optimize their BVLOS operations?

This article aims to demystify this choice. We'll delve deep into both platforms, comparing their features, and drawing insights from genuine user feedback, all with a focus on maximizing the benefits of DJI dock integration.

FlytBase: Product Overview

FlytBase emerged as a leading enterprise drone autonomy software, tailored to automate and optimize drone operations. Its compatibility with the DJI dock underscores its commitment to facilitating seamless BVLOS operations.

12213375280?profile=RESIZE_710x

FlytBase: Key Features

  1. BVLOS-Ready Operations: With regulatory approvals in its arsenal, FlytBase ensures enterprises can confidently undertake extended drone operations.
  2. Open Integration: A flexible platform, FlytBase supports robust API and third-party app integrations, catering to diverse enterprise needs.
  3. Data Security: GDPR compliance and ISO 27001 certification ensure that data integrity and security are paramount.
  4. Operational Excellence: From live HD/thermal feeds to ERP and VMS integrations, FlytBase offers a comprehensive suite for varied enterprise needs.
  5. DJI Dock Compatibility: Seamless integration with DJI dock facilitates automated charging, data transfer, and mission planning, enhancing operational efficiency.

12213376670?profile=RESIZE_710x

 

FlytBase: User Review

12213378091?profile=RESIZE_710x

FlytBase: Pricing Plans

For detailed pricing information reach out here: https://www.flytbase.com/contact

FlightHub 2: Product Overview

DJI's FlightHub 2 is not just another drone management solution. It's a comprehensive cloud-based platform designed to provide real-time insights for drone missions. Its compatibility with the DJI dock makes it a formidable choice for enterprises aiming for streamlined BVLOS operations.

12213375872?profile=RESIZE_710x

FlightHub 2: Key Features

  1. Real-time Situational Awareness: Features like 2.5D Base Map and One-Tap Panorama Sync ensure enterprises always have a bird's-eye view of their operations.
  2. Cloud Power: With Cloud Mapping and Unified Management, FlightHub 2 leverages the cloud's prowess for enhanced operational insights.
  3. Data Security: Hosted on AWS and compliant with ISO/IEC 27001, FlightHub 2 ensures data remains protected and secure.
  4. Operational Suite: From Mission Live Streaming to Ground-to-Cloud Synergy, FlightHub 2 offers a range of features to optimize drone operations.
  5. DJI Dock Integration: FlightHub 2's seamless integration with DJI dock ensures automated drone operations, from charging to mission execution, are a breeze.

12213377659?profile=RESIZE_710x

Flighthub 2: Pricing Plans

12213379088?profile=RESIZE_710x

FlytBase vs FlightHub 2: Key Differentiators

Let's delve into the primary areas where FlytBase and FlightHub 2 diverge.

  1. BVLOS Operations and Integration:

    • FlytBase: Puts a strong emphasis on its BVLOS-ready capabilities, highlighting its regulatory approvals. Its open platform approach with APIs and third-party app integration capabilities makes it stand out for enterprises looking for flexibility.
    • FlightHub 2: While it also supports BVLOS operations, its strength lies in providing comprehensive real-time situational awareness. The platform doesn't emphasize third-party integrations as much but offers a rich set of built-in features.
  2. User Experience and Interface:

    • FlytBase: Offers a streamlined interface tailored for ease of use, making it intuitive for users to navigate and manage drone operations.
    • FlightHub 2: Provides a more detailed dashboard, focusing on in-depth insights and comprehensive drone mission management. This might come across as more complex for some users, especially those new to drone operations.
  3. Data Security and Compliance:

    • FlytBase: Prioritizes data security with multiple layers of protection, including GDPR compliance and ISO 27001 certification, ensuring data integrity and security.
    • FlightHub 2: While it also emphasizes data security, its hosting on Amazon Web Services with ISO/IEC 27001 security certifications is its unique selling point.
  4. Operational Features and DJI Dock Compatibility:

    • FlytBase: Apart from its core features like live HD/thermal drone feeds, its compatibility with DJI dock ensures seamless integration for automated BVLOS operations.
    • FlightHub 2: While it also integrates seamlessly with DJI dock, it offers additional features like 2.5D Base Map and Cloud Mapping, enhancing the operational experience.

By understanding these key differentiators, enterprises can make an informed decision based on their specific needs and operational priorities.

Conclusion - FlytBase vs FlightHub 2

Every decision in the realm of drone operations should be rooted in your enterprise's specific requirements and objectives. It's crucial to align your choice with your operational needs and future goals.

FlytBase distinctly shines with its BVLOS-ready capabilities and its open integration approach. Its emphasis on regulatory approvals and flexibility in third-party integrations makes it a top choice for enterprises that value adaptability and a hands-on approach to drone operations. Moreover, its robust data security measures ensure that enterprises can operate with peace of mind.

FlightHub 2, on the other hand, excels in providing real-time situational awareness and a comprehensive suite of built-in features. It's tailored for those who prioritize in-depth insights and a holistic view of their drone missions.

While both platforms offer commendable features and DJI dock compatibility, FlytBase might have a slight edge for those who prioritize flexibility and BVLOS operations. However, if you're looking to explore further, there might be other platforms in the market that cater to niche drone operational needs.

Read more…

Go2 Quadruped Robot Personal accompany and life care robot / Introducing the Go2 sold by Brushlessgimbal.ca:

The New Generation Unitree Go2 returning with glory leads the bionic robotics world.
Introducing the New Go2 Intelligent Bionic Quadruped Robot - the cutting-edge 
marvel that's set to revolutionize robotics! With its new and improved 
features, this robot is a leap forward in technology.
Imagine a robot that sees the world like never before. Our Super Recognition 
System powered by 4D LIDAR L1 technology equips the Go2 robot with unparalleled 
perception, ensuring it navigates and interacts with its surroundings seamlessly.
Speed meets precision with a max running speed of approximately 5m/s and a peak 
joint torque of around 45N.m. This means the Go2 robot is not only swift but 
also incredibly powerful, opening up a world of possibilities for various applications.
Stay connected effortlessly with the wireless module that supports Wi-Fi6,
Bluetooth, and 4G. The Go2 robot is always in touch, no matter where it goes.
Don't worry about interruptions during crucial tasks – the ultra-long battery 
endurance, lasting approximately 2 to 4 hours, ensures 
extended operation without frequent recharging.
Experience the future of robotics with the Intelligent Side-follow System (ISS 2.0)
The Go2 robot can intelligently follow you, making it the 
perfect companion for various scenarios.
But that's not all – interaction reaches new heights as you take control with the 
iPhone app. Engage in exciting activities and enjoy intuitive control like never before.
With AI integration at its core, the Go2 robot learns and adapts, pushing the 
boundaries of what a robot can do. The future is here, and it's intelligent, 
dynamic, and brimming with potential – it's the Go2 Intelligent Bionic Quadruped Robot.
Go2 air and Go2 do not support secondary development

Go2 @ https://brushlessgimbal.ca/RTF-Ready-To-Play-Kits/Go2-Quadruped-Robot-Personal-Accompany-And-Life-Care-Robot-New
Read more…

To prolong the lifespan of your drone, regular maintenance ensures that the device performs at its best in future operations with fewer malfunctions and improved efficiency. Here are some maintenance methods divided into two situations:

1. Cleaning After Operation

The equipment needs to be cleaned after using corrosive liquids such as pesticides. You can follow the cleaning steps:

①Fill the tank with soapy water or the laundry powder. Start spraying to clean pesticide residues in the spraying system.

②Fill the tank with clean water and start spraying to wash off residual soapy water or the laundry powder in the spraying system. Place the empty tank in the aircraft and start spraying until all pipes are drained, avoiding damage to other devices during transportation or storage.

③Wipe the surface of the aircraft to remove potion stains and mud. Empty the tank and drain the pipes if the aircraft needs to be transferred or will not be used for an extended period.

2. Regular Maintenance

The regular maintenance should check and repair body structure, power system, spraying system, and power system timely.

①Drone frame: Check if any screw on the frame is loosening or missing, the components including landing gears, fuselage, arms, motors and antennas are in good condition, the connectors of each component are firmly in position, whether they have oxidized, and if the battery plug is deformed, check if the frame and components are breakages and cracks.

②Propulsion System: Check if the propellers, motors and ESCs are cracked or deformed, if any fixing screw is loosening or missing.

③Spray System: Check the wear of pump and tank, and check if the pump connectors have come loose or oxidized, etc.

④Power System: Before and after the use of the power device, you should check and clean each component including the battery plug and socket, ensuring that the power socket remains clean, dry and free of foreign objects.

Read more…

Here I will introduce how to upgrade the EPS200's turntable.

As the new turntable is embedded with metal sowing blades, thickened and reinforced, which is more wear-resistant and not easy to deform, prolonging the service life.

Step1: Loosen the bottom knob, and take out the old turntable.

12189367656?profile=RESIZE_584x

Step 2:Place the new turntable and align it with the screw hole positions, tighten the knob, then the turntable is upgraded successfully.

12189367681?profile=RESIZE_400x

 

EPS200Pro also deeply optimized steering gear, control module and cables, making the spreader more stable and better performance. The modular design makes all parts can be replaced separately and conveniently. Follow EFT to get the latest product trends and preferential information.

Read more…

DIY tracking drone

My Holybro 500 v2 is equipped with a Luxonis OAK-D-Lite camera (depthAI) and a RPi4. A python artificial intelligence (AI) code on the RPi4 detects objects (f.i. persons) using mobilenet ssd. The area of the enclosing object rectangle estimates the distance of the object, while the center determines the yaw of the drone. 2 PID controllers determine the forward speed and yaw of the drone. Once the track switch is on, the drone is controlled in guided mode by the custom python code. This algorithm yields a satisfactory tracking behavior as shown in the video.

Read more…

The stirring function of spreader can make blocky or sticky particles more uniform, and spreading operation smoother. Take EFT's spreader as an example to introduce how to quickly upgrade EPS200's stir bar to stir plate.

Step: Disassemble the spreader from the tank, remove the top screw, take out the stir bar, install the new stirring plate, then tighten the screw, the stirring bar is upgraded successfully.

12183782454?profile=RESIZE_710x

As you can see, the umbrella-shaped metal stirring plate increased the force area and stir with greater power, which makes sowing smooth and non-blocking.

Read more…

In the rapidly evolving landscape of drone operations, one of the most significant challenges is navigating beyond the line of sight (BVLOS). Operating BVLOS opens up endless possibilities for industries, but it also brings a host of crucial considerations to the forefront. Flight safety and risk mitigation take utmost importance among these considerations, as the safety of people, property, and the uncrewed aircraft itself is paramount.

Currently, most BVLOS operations require the presence of a vigilant visual observer (VO) who diligently scans the skies for potential obstacles and hazards. If they come across one, they must immediately notify the remote pilot in command to abort the drone's current mission. Therefore, it goes without saying how dangerous any form of communication lapse can be.

The Role of Visual Observers in BVLOS Flights

Before delving into the specifics of the various types and Detect and Avoid (DAA) technologies available, we must first understand the role of visual observers and why they are required. For example, the Federal Aviation Administration (FAA) in the United States specifies the operational requirements that must be met before flying unmanned aircraft systems. There is a requirement for a visual observer to perform the following roles for all drone operations that do not have a Part 107.33 waiver.

However, this human-centric approach can be both resource-intensive and limited in terms of continuous monitoring. There could be objects in the area of the drone operation, such as a small non-cooperative paraglider with no engine noise. It may be difficult for a human to accurately identify that and notify the remote pilot-in-command (PIC).

The Solution: AI-powered Detect & Avoid Technology

Detect and avoid (DAA) system enables operators to sense and avoid other aircraft and obstacles autonomously. These systems use sensors, such as radar, acoustic, and visual, to detect and avoid obstacles in the airspace. With DAA technology, drones can operate safely beyond visual line of sight, expanding their range of capabilities and applications.

Types of DAA Systems

There are several types of DAA systems, including radar, acoustic, and optical systems. Each of these systems has its own set of pros and cons, and the choice of system depends on the specific requirements of the drone operation.

Casia G: Iris Automation’s Ground-Based Detect and Alert System

Based on optical vision, Casia G is a ground-based surveillance system from Iris Automation to continuously monitor airspace and ensure UAS operations are safe from intruder aircraft. The sensors employ Iris' patented AI and computer vision technology to provide a full optical, 360° field of view for detecting and alerting to any cooperative or non-cooperative aircraft within a 2 km radius of the sensor's location.

Integration with FlytBase for Safe Remote Drone Operations

By integrating with the Casia G system, the FlytBasedashboard provides real-time data on intrusive aircraft, including type, live telemetry, and location on the map. Remote drone operators can monitor the status and radius of the Casia G sensor and receive immediate alerts if unauthorized aircraft are detected within their operating area.

BVLOS Approvals with Detect and Avoid Systems

The FAA has introduced a smart approach by incorporating "shielding" into their waivers, acknowledging that flying within 50 feet of the ground or a structure is likely safer for other aircraft. To achieve true BVLOS flights, the FAA requires some form of detect and avoid system, whether cooperative or non-cooperative, integrated into the operations.

The Way Ahead

While human visual observers remain important, technological solutions offer scalability and significant advantages. These solutions should be seen as tactical mitigation measures complementing other safety protocols. Cameras, sensors, and advanced safety technologies provide higher accuracy, continuous monitoring, and real-time responses, enhancing the safety of drone operations and opening doors to more advanced applications in the future.

Continued innovation and advancement in DAA technology are going to be essential for handling complex situations effectively and mitigating risks and safely integrating drones into the world’s third dimension.

Conclusion

The future of drone navigation is here, and it's called Detect and Avoid (DAA) systems. These systems, powered by AI and advanced sensor technology, are revolutionizing the way drones operate, especially in BVLOS operations. As we continue to innovate and advance in this field, we can expect to see safer, more efficient, and more scalable drone operations in the near future.

Read the Full Article Here: https://www.flytbase.com/blog/detect-and-avoid-technology

Read more…

Aerial spreading can protect land and seedlings, and is more and more used in agricultural work such as fertilization,seeding ,feeding etc., efficient and affordable. Based on the EPS200, the EPS200Pro deeply optimizes the stirring plate, turntable, and control Module,etc., better performance, and it can spread smoothly for heavy-duty mixed material operations and wet & sticky materials.

12175094282?profile=RESIZE_400x

 

Strong Stirring, Smooth Spreading

The newly upgraded EPS200Pro has metal stirring plate with a wider force area, the stirring plate can uniformly stir wet or blocked material under greater stirring power and separate sticky granules by strong rotation to avoid clogging. Umbrella-shaped metal design is easy to clean and anti-corrosion. Working with 360°adjustable valve, it can spread precisely and smoothly.

12175094301?profile=RESIZE_400x

Upgrade Turntable, Strong and Durable

The turntable is embedded with metal blades, which is strong, compressive and wear-resistant . Under high-speed rotation, the granules quickly falls and evenly distributed, with an effectively spreading width of 12m. For large area rice sowing, fertilization, slope fertilization can be done easily and quickly.

12175094470?profile=RESIZE_400x

 

Wiring Upgrade, Safe and Stable

EPS200Pro thicken cables and pins for enhanced current resistance and easy plug-in. The control module has also been deeply optimized, upgraded the internal motherboard circuit, the maximum power increased to 180w, and the wide voltage range expanded to 24V-80V, which can effectively prevent motherboard damage caused by over-voltage and over-current due to abnormal situations. The sealed waterproof design from the inside out, prolongs the lifespan , ensures the stable and efficient operation in various weather conditions.12175096870?profile=RESIZE_400x

 

Under the CAN control mode, It has speed feedback, valve angle feedback, blocking alarm, valve fault alarm, over-temperature, over-voltage alarm and other fault warning functions , which can real-time monitor the operation status, accurate fault diagnosis, and quick maintenance, thereby extending the product lifespan.

 

Universal Mounting, Multi-scenario Application

The EPS200Pro continues the tool-free quick release design with a universal interface, which can match with various types of aircraft. It's small and portable, very suitable for outdoor operations. It can sowing 0.5~6mm granules, applies to various scenarios such as grass seeding, fertilization, feeding etc.

12175099859?profile=RESIZE_400x

 

Both the EPS200Pro and EPS200 takes modular structure design. EPS 200 can quickly be upgraded by replacing some parts.

All parts can be placed on official store directly:

https://aheft.en.alibaba.com/

https://www.aliexpress.com/store/1101835339

 

 

Read more…

1. What parts are needed to assemble an agriculture drone?

To install a final agricultural drone, the following parts are required: drone frame, spreading system, spraying system, motor set, control system, and power system. All of these parts can be purchased separately. Here are some recommended suppliers, such as EFT's drone frame, SIYI's remote controller, JIYI's flight control, TATTU's battery. It is recommended to buy drone parts from Brand and reliable manufacturers,  which can ensure the stability of the whole drone and reduce the after-sales cost. The following are all the parts needed for a drone for your reference.12163670871?profile=RESIZE_710x

12163670476?profile=RESIZE_710x

2. What You Need to Know When Select Drone Parts?

 

①Frame selection. The priority consideration goes to whether to choose a four-axis or six-axis drone frame. Six-axis frame is more stable for large load, while four-axis frame with small size is convenient to transport and suitable for outdoor operation, it is easy for newbie to get started. Drone frames from big-brand manufacturers are highly recommended, which could be more stable and durable.

②Motor set selection. The outer diameter of the frame arm needs to be taken into account when purchasing, the wrong size will cause mismatch. The load also needs to be considered, the heavier the load, the larger the motor required. You can select an integrated motor set directly, or buy motor, Base, and paddles separately because welding them by yourself can be cheaper. If you buy the spare parts separately, please note that the paddles and motors must match the correct CW and CCW code, and each drone must have the same number of CW and CCW.

③Flight control selection. Standard flight control for agriculture drones such as K++ . The open-source flight control requires strong software development skills which is not recommended to beginners.

④Battery selection. There are smart batteries and pouch batteries for drones. The battery must be selected according to the frame to avoid overloading or insufficient power supply. The most common battery on the market is TATTU. The battery interface model and communication protocol also should be cared

Below is a chart of some frames with recommended motor and battery for reference.

12163672873?profile=RESIZE_710x

3. How to assemble? 2 Tutorial videos for your reference.

Assembly tutorial for 10-20L classic drone frame:

With simple structure and low cost, the classic drone frame with small load has always been a salable frame. It is very suitable for newbie or use in countries with 25kg restrictions. The assembly video below is for reference.

https://youtube.com/embed/r_A6ZNlqfu0

 

Assembly tutorial for 20L-30L plug-in drone frame

The popular plug-in drones can quickly switch between spraying and spreading. The tank and battery adopt the plug-in installation, which makes plug and unplug easier. For detailed assembly steps, please refer to the video below.

https://youtube.com/embed/iVDzFTXt5P8

Note: For security, it is recommended to finish all installation before inserting battery and powering on. The propellers are suggested to be installed after all debugging has been completed.

 

 

Read more…

Application of TF-Luna in Pixhawk

TF-Luna can directly be connected with the serial port of Pixhawk. TF-Luna can be used in flight device

for the purpose of altitude holding or obstacle avoidance. This document is suitable to Pixhawk adopts ArduCopter V4.0.0 or higher firmware.

Example for connecting Pixhawk:

 12163570060?profile=RESIZE_584x

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic Diagram of Connecting TF-Luna with TELEM 2 Interface (Serial Port 2) of Pixhawk

 

a)MissionPlanner configuration description of TF-Luna for the purpose of altitude hold

 

Connect the flight control board to MP.Attention:the installation height should be bigger than non-detection zone.Select [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

SERIAL2_PROTOCOL = 9    [Rangefinder option]

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

RNGFND_MIN_CM = 20    [It could be changed according to real demands and should be bigger LiDAR than non-detection zone,unit is cm]

RNGFND_MAX_CM = 200      [It could be changed according to real demands but should be smaller than

effective measure range of LiDAR,unit is cm]

RNGFND_GNDCLEAR = 15    [expressed in cm, depending upon mounting height of the module and

should be bigger LiDAR than non-detection zone]

RNGFND_ORIENT=25    [face down]

PRX_TYPE=0

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the altitude value from LiDAR sensor: double click the area of the Mission Planner, see the following picture:

12163575283?profile=RESIZE_584x

Select option sonarrange,see following picture:

12163575294?profile=RESIZE_584x 

The altitude distance from the LiDAR will be displayed in Sonar Range(meters),see the following picture:

 

b)  MissionPlannerconfiguration description of TF-Luna for the purpose of Obstacle Avoidance

12163576459?profile=RESIZE_584x 

It’s only recommended to be used in Loiter mode, the detail setting is as followings:

Connect the flight control board to MP. Attention:distance between UAV margin and LiDAR should be bigger than LiDAR non-detection zone.  Select  [Full Parameter List] in the left from the below bar- [CONFIG/TUNING] . Find and modify the following parameters:

AVOID_MARGIN=3 [Unit: m, set obstacle avoidance distance as required]

SERIAL2_PROTOCOL = 9    [Rangefinder option]

SERIAL2_BAUD = 115    [Choose the current LiDAR baud rate,if haven’t been changed,the default baud rate 115200 should be selected,that is 115]

RNGFND_TYPE = 20    [Same option with TFmini]

RNGFND_MIN_CM = 20      [It could be changed according to real demands and should be bigger LiDAR

than non-detection zone,unit is cm]

RNGFND_MAX_CM = 200    [It could be changed according to real demands but should be smaller than effective measure range of LiDAR,unit is cm]

RNGFND_GNDCLEAR = 15    [Unit: cm, depending upon mounting height of the module and should be bigger LiDAR than non-detection zone]

RNGFND_ORIENT=0      [It depends on the LiDAR’s real installation direction,0~7 is supported up to

now,see detail in MP]

PRX_TYPE=4        [RangeFinder should be selected for proximity sensor in obstacle avoidance mode]

Upon setting of these parameters, click [Write Params] on the right of the software to finish.

If the error message “Bad Lidar Health” appears, please check if the connection is correct and the power supply is normal, then restart Pixhawk.

How to see the target distance from the LiDAR:(distance from LiDAR in obstacle avoidance can’t be displayed in sonarrange option )press Ctrl+F button in keyboard,the following window will pop out:

12163575698?profile=RESIZE_710x

Click button Proximity,the following window will appear: 

The number in green color means the distance from LiDAR in obstcle avoidance mode  (the number only refresh when this window open,close,zoom in or zoom out,it doesn’t mean the real time distance from LiDAR and will not be influenced in Mission Planner version under v1.3.48,the problem could be solved by updating Mission Planner)

Attach:If TELEM 2 port has been used ,SERIAL4/5 interface could be used,the other setting are same

Figure 2 Schematic Diagram of Connecting TF-Luna with SERIAL4/5 Interface (Serial Port 4/5) of Pixhawk

Configuration Descriptions of Mission Planner

Connect  flight  control  board  to  MP,  Select  [Full  Parameter  List]  in  the  left  from  the  below  bar [CONFIG/TUNING] . Find and modify following parameters:

SERIAL4_PROTOCOL = 9 (LiDAR)

SERIAL4_BAUD = 115

Upon setting of these parameters, the other parameters should be same as Mission Planner configuration description of TF-Luna for the purpose of Obstacle Avoidance or Altitude Holding,then click [Write Params] on the right of the software to finish.

Read more…

T-MOTOR Mystery Box rule:
We will prepare a quadcopter UAV propulsion system in the box, including 4-5 motors, 4-5 ESCs and 2-3 pairs of propellers.
You won't know the products' models in the box, we will only inform the thrust range and prop size.
If you are a drone DIY adventurer, if you want to buy T-MOTOR propulsion system at the lowest price, then do not miss this chance! The official link will release on the 1st of Aug.
12161771860?profile=RESIZE_710x

Read more…

Get your drone compliant with US and EU rules with Dronetag Remote ID solutions, available now at Aeromao

12144632888?profile=RESIZE_710x

Remote ID Devices and Dronetag App

Flying with an older drone that is not compliant with the new regulations? No worries. Dronetag offers small IoT devices that you can easily attach to any drone model.
Install the Dronetag App manage all your devices, check airspace zones, plan your flights, browse real-time data, inspect other airborne drones and stay notified about any hazards around you. All compliant with US & EU rules.

Professional and hobby pilots, as well as drone manufacturers and authorities, are all thrilled with unlimited options that bring Dronetag RID devices.

Learn about the Dronetag company here.

 

 

Dronetag Mini     12144633091?profile=RESIZE_400x

The ultimate Remote ID add-on device attachable to any drone
- 32 grams
- EU & US Standards
- Network & Direct RID

 

Order here

 

 

 

 

 

Dronetag Beacon     12144633277?profile=RESIZE_400x

Bare minimum for Direct/Broadcast RID in the tiniest and lightest package
- 16 grams
- Up to 3km range
- 16 hr Battery life

 

Order here

 

 

 

 

 

What is Remote ID and how to stay compliant?
Remote ID is a system that allows drones to transmit identification and location information. This information can be received by other airspace participants, including authorities, pilots and the general public.

Who has to use Direct / Broadcast Remote ID?

Under new regulations in the US and EU, most drones weighing more than 249 grams (0.55 pounds) must be equipped with a Direct / Broadcast Remote ID system by a certain date. This responsibility applies both to recreational drones and commercially flown drones.

check this website to answer your questions: https://drone-remote-id.com/

Check all products of Dronetag here

 

 

Read more…

Previously, I introduced how to spray with Manual Operation Mode and A-B Route Operation Mode. Today, I highly recommend you use the more intelligent operation mode —— fully auto operation mode. It can plan route and avoid obstacles accurately. However, you should set blocks, measure and plan it in advance, which requires more preparation. Taking the Z series holistic system as an example.

Step 1.Click Agri Assistant >Connect> H12/MK15 >Ground Plan > New Plot.

Step 2.Select the planning method①Handheld GPS(RTK point device) ②Flight GPS ③Map Selection ④Waypoint planning. Method① and ② are widely used.

Step 3.Set Ground Name, move the handheld point device or fly the aircraft to the field, click the Boundary Point on the right side of screen to add dots in turn.

Step 4.About obstacles, move handheld point device or fly the aircraft to the obstacles, click Obstacle Point. There are two methods to mark it, Polygon barrier point and Circle obstacle area. Note that if you select Polygon barrier point, use the Boundary Point to dot. Handheld RTK point are recommended.

12144466498?profile=RESIZE_710x

Step 5.Click “Save” after all operations are done, tap on the left, select the newly saved plot, click Share > Confirm, the plot information is listed in Block Data.

Step 6.Tap, select the plot, adjust the route and click “Start”, then check the parameters according to prompt. Click Confirm and Slide Right Start to take off.

 

You can select the desired mode for spray according to the application scenarios. What kind of work mode have you used? Welcom to share your opinion.

*The above steps are for reference only.  Please refer to product use manual when using.

 

Read more…

Last time I introduced how to use manual operation mode for spraying. Today, I will continue to take the Z series holistic system as an example to share another work mode—A-B Route Operation Mode, which can form a straight route line between two points.

There are two methods can enter the AB operation mode:

Method 1:

1.Click Agri Assistant >Connect> H12/MK15 >Start

2.Complete the preflight inspection and unlock for takeoff in Attitude Mode.

3.After takeoff, fly to the field where you want to work. After the aircraft stabilizes, click “A” to enter the AB operation mode. Click the A near your side to add point A. Detailed flight parameters will appear on the screen. Set the parameters, then push the stick forward, fly the aircraft to the other side of the field and click “B” to add point B.12144459101?profile=RESIZE_710x

4.After adding point AB, click “Start”, then choose “To the left” or “To the right” then the aircraft can automatically identify the planned route.

12144458085?profile=RESIZE_710x

Method 2:

1.Fly to the field where you want to work. After the aircraft stabilizes, move the left lever on the side close to you. Switch Attitude to Auto mode, and then fly to the A position to add point A , the detailed flight parameters will appear on the screen. After setting the parameters, push the lever forward, fly the aircraft to the other side to add point B.

2.After adding point A and B, fully push the right stick to the left or right, and the aircraft can automatically identify the planned route.

 

In the next article, I will introduce you the last spraying operation mode. If you have any question, welcome to share your opinion.

*The above steps are for reference only.  Please refer to product use manual when using.

 

Read more…

There are three operation modes for agriculture drones during spraying. Manual Operation Mode, A-B Route Operation Mode, and Auto Operation Mode. Today, I will take the Z series holistic system solution as an example to share how to operate the manual operation mode with you.

Step 1. Open Agri Assistant App on remote controller, click Connect> H12/MK15 >Start.

12144048677?profile=RESIZE_710x

Step 2. Tap “Spray” in the top information bar, set Spray Type to “Spray Auto” , set the Hec Dosage and Disc speed, then switch Spray type to “Spray Manual”, tap screen to confirm. Take off the aircraft in the Attitude Mode, fly to the field, switch to the Manual Operation Mode, then operate the aircraft by sticks, press C and D to spray.

12144049062?profile=RESIZE_710x

12144049087?profile=RESIZE_710x

 

The manual operation mode can apply to various complex fields, but it requires skilled flyer to operate. In the next article, I will introduce a simpler spraying work mode to you guys. If you have any question, welcome to share your opinion.

 *The above steps are for reference only.  Please refer to product use manual when using.

Read more…

Introducing G-Hadron - The Ultimate Gimbal Solution for Drone Integrators!

Gremsy proudly presents G-Hadron, a groundbreaking solution that will revolutionize aerial imaging for drone integrators. This cutting-edge gimbal is designed to deliver unparalleled performance in a compact and lightweight package, ensuring exceptional stabilization and unlocking the full potential of thermal and visible imaging.

12125758080?profile=RESIZE_710x

Key Features and Benefits:

1. Compact and Lightweight Design: The G-Hadron gimbal sets a new standard for size and weight optimization, making it an ideal companion for the Hadron 640R, a high-performance dual thermal and visible camera module. Experience the freedom of capturing incredible imagery without the burden of a bulky setup.

2. Unparalleled Stabilization: Integrate the G-Hadron into your embedded system and witness the transformation of your aerial imaging capabilities. Say goodbye to unwanted shakes and disturbances, as the G-Hadron provides impressive stabilization for crystal-clear thermal and visible imaging, ensuring precise and stable footage.

3. Plug-and-Play Compatibility: Simplifying integration is our top priority. The G-Hadron is meticulously engineered to offer seamless plug-and-play compatibility tailored specifically for the Hadron 640R. Enjoy a hassle-free setup, allowing you to focus on capturing stunning imagery while we take care of the technical intricacies.

4. Standard Damping System: Weighing a mere 42g, the G-Hadron's standard damping system guarantees optimal performance across various drone models weighing over 1 kg. No matter which drone you use, the G-Hadron ensures unparalleled stability and precision, empowering you to achieve your aerial imaging goals confidently.

5. Custom Damping for Your Drones: We understand that each drone is unique. If you require a custom damping system or mounting specifications for your specific drone, our dedicated team is here to assist you. Benefit from our expertise and tailored solutions to optimize your integration experience.

12125758473?profile=RESIZE_710x

Pre-order your G-Hadron Gimbal now to secure your unit for shipping in July 2023. As a special offer for integrators, exclusive pricing is available until July 6, 2023. Don't miss out on this extraordinary opportunity to be among the first to experience the future of aerial imaging.

Personalized Assistance:

At Gremsy, we are committed to providing superior customer support. Our dedicated sales team is ready to assist you with personalized guidance and assistance. Simply provide your information, and we'll be there to help you navigate the integration process, ensuring you harness the full potential of the G-Hadron gimbal.

Don't let anything hold you back from capturing breathtaking aerial thermal and visible images. Embrace the power of G-Hadron, the ultimate compact and lightweight gimbal designed exclusively for drone integrators. Visit our official website at https://bit.ly/3Pn8pOo to learn more and secure your G-Hadron today.

Join us in shaping the future of aerial imaging with Gremsy!

Read more…
The advancements in drone technology have revolutionized industries, offering new possibilities. Among them, fixed-wing drones with water landing capabilities have emerged as versatile tools, providing unique advantages and assisting applications in various fields.
Read more…